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This is an initial draft of some material from our ongoing project to explore the history of Tommy
Flowers, the ways in which Colossus was used and configured, and its place in the history of information
technology. This work is sponsored by Mrs. L.D. Rope’s Second Charitable Trust. The current draft is very
preliminary, so please do not quote, cite, or distribute without our permission. If names and references
are confusing to you our apologies! Fortunately the basics of Colossus and Bletchley Park are well
covered in Wikipedia.

Colossus was a codebreaking device built by the British General Post Office at the end of 1943, under
the direction of career telecommunications engineer Tommy Flowers. It entered use at Bletchley Park in
1944 to speed the work of codebreakers targeting what was then codenamed “fish,” a family of Lorenz
teleprinter codes used for high level German military communication. Colossus was not a one-off
machine, like most early electronic computers, but the prototype for a family of ten “colossi,” in which
later models incorporated some significant improvements. The machines were used by the Newmanry, a
group under mathematician Max Newman, where ingenious codebreaking users discovered new
applications for them which, in turn, shaped the provision of additional controls and capabilities in the
later models. Unlike ENIAC, which began in modest secrecy but soon graced the front page of the New
York Times, Colossus was highly classified and remained unknown to the public until the 1970s.

Although famous, its place within the history of computing remains ambiguous and its basic capabilities
are little understood. In particular, Colossus is often said to have been a “programmable electronic
computer,” indeed to have been the first such computer, but closer attention shows that
“programmable” has never been properly defined in this context, being taken to mean no more that
“extensively configurable.” Instead we pull together evidence form other mid-1940s projects, and from
the use of “program” in other contexts, to argue that to follow a program is to carry out a sequence of
operations over time. In this sense Colossus carried out a program, but although many parameters could
be set for some of these operations the basic sequence of operations could not be altered by the user.

This characterization fits with statements made by Flowers himself, and some of those who worked with
him. Their more nuanced characterizations, for example of Colossus as an “electronic processor” rather
than as a “computer,” or as a machine that followed a program set by Flowers rather than by the user,
are notably more restrained than those of the machine’s boosters. We argue that Colossus was
shoehorned into the role of programmable computer at a time when it might have seemed that only
this would restore its place in history. Today, as out reliance on digital communications grows while the
traditional artifact of “the computer” vanishes we are better able to appreciate this remarkable machine
on its own terms. As a pioneering digital signal processing device, Colossus was essentially unique
among many wartime computing and codebreaking projects in making aggressive use of digital
electronics, working reliably, being ready in time to help the war effort, and serving a vital role within
the conflict.
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Situating Colossus

Dozens of unique electronic and mechanical computers were built during the 1940s. Of these a handful,
such as the Harvard Mark 1, ENIAC, EDSAC, and the UNIVAC 1, have clear and prominent places in the
history of computing. They consistently appear in overview histories, such as Martin Campbell-Kelly and
Willian Aspray’s Computer and Walter Isaacson’s The Innovators, in television documentary series, and
in comprehensive museum exhibitions such as those at the Computer History Museum and the Heinz
Nixdorf Museums Forum. Each is remembered as the “first” machine to reach one or another historical
milestone. These specific honors were agreed upon after a long and messy battle, conducted during the
1970s and 80s, over which deserved to be called the “first computer.”

The historical place of Colossus is less clear. Most other pioneering computers were publicized during
their operational lifetimes. ENIAC, for example, was announced to the world with a front page story in
the New York Times and installed in a showpiece facility where it was frequently displayed for visitors.!
The Colossus machines were designed in secret, deployed as a vital part of one of the war’s most
militarily sensitive operations, and kept confidential for decades afterwards. From the 1940s to the
1970s, as teams of patent lawyers gathered records concerning other early machines and subjected
their designers to repeated rounds of deposition and testimony, those responsible for Colossus
remained quiet about the machine’s capabilities and even its existence.

Word of Colossus began to spread in the 1970s as Brian Randell, a computer scientist with an interest in
the early history of electronic computing, heard rumors about the machine’s existence. In 1976 he
shocked the computer pioneers a seminal computer history meeting at Los Alamos National Laboratory
with a detailed account of Colossus and the conclusion that Colossus was “a special-purpose program-
controlled electronic digital computer” that could “most aptly be compared” to ENIAC in its flexibility
and programming method.? Randell had dug up an impressive amount of information, but without
access to original documents his account was unavoidably speculative. This led to considerable interest
in Tommy Flowers, who gave several public talks and interviews in the 1970s and published his own
technical article on Colossus and its history in 1983. Yet even Flowers was working from memory, and
his description turned out to have several significant historical and technical inaccuracies.?

This factual uncertainty as to what Colossus actually was and how it actually worked may explain its
strange position within the history of computing. It is celebrated by a small community of enthusiasts,
some of whom view it as the most important of all the early computers. For example, Jack Copeland has
claimed that if the Colossus machines had been preserved as “the heart of a scientific research facility”
then “the Internet—and even the personal computer—might have been developed a decade or more
earlier.”*As with boosters of other less well known early computers, such as the proponents of lowan

! Thomas Haigh, Mark Priestley, and Crispin Rope, Eniac in Action: Making and Remaking the Modern Computer
(Cambridge, MA: MIT Press, 2016),

2 A revised version was published the seminal volume Brian Randell, "The Colossus," ed. N Metropolis, J Howlett,
and Gian-Carlo Rota (New York: Academic Press, 1980)

3 Thomas H Flowers, "The Design of Colossus," Annals of the History of Computing 5, no. 3 (1983) For example,
Flowers remembered the electronic buffer introduced on Colossus 2 as buffering the outputs of five channels of
simulated cipher wheel output, but later analysis showed that it buffered only one channel.

4 Copeland, p. 119 of Turing popular book.
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computing pioneer John Atanasoff, this discourse can take on a rather partisan tone.®> Copeland, for
example, attributes to Flowers himself remarks that “Colossus was ‘much more of a computer than
ENIAC’” which was “just a ‘number cruncher.””® Tony Sale, who devoted many years of his retirement to
the reconstruction of Colossus, wrote that his project to rebuild Colossus has been motivated in part by
a sense that “for far too long the Americans have got away with the myth that the ENIAC was the first
large-scale electronic digital calculator in the world.” Following the completion of the reconstruction, he
claimed, “There has been a stunned silence from across the water.”’

Within Britain, this Colossus was recently honored with a stamp from the Royal Mail, on which was
printed “world’s first electronic digital computer,” and at least in Britain retains a fairly high profile
thanks to its connection with the work of Bletchley Park, which has now eclipsed former favorites such
as the “dambusters” raid to become one of the most famous and celebrated aspects of the war.
Colossus even makes a brief appearance in Cryptonomicon, Neal Stephenson’s hugely popular novel of
cryptography and the wartime origins of information technology.

It is far from clear that the more recent silence noted by Sale is the result of stunned acquiescence by
“the Americans” to his claims. Colossus seems rather to have been politely ignored by most serious
historians of computing. In Computer, Campbell-Kelly & Aspray note merely that Turing’s design for a
mechanical codebreaking machine “was followed by an electronic machine, the Colossus, in 1943,” as a
result of which several people who would later work on computer projects were exposed to electronic
technologies.® The other standard scholarly history of computing, Paul Ceruzzi’s A History of Modern
Computing doesn’t mention Colossus at all.’ Perhaps as a response to growing awareness of Colossus,
Ceruzzi gives it about a page in his shorter and more recent Computing: A Concise History. He wonders
why Colossus is not “more heralded,” and concludes that its focus on textual rather than numerical
operations had combined with the long prevalent secrecy to marginalize it.

The current situation, then, is one in which Colossus is lavishly, if sometimes shrilly, praised by its fans
and increasingly embraced by the British public as a symbol of national greatness but largely ignored by

5 For example, Alice Burks, Who Invented the Computer: The Legal Battle That Changed Computing (New York, NY:
Prometheus Books, 2003),

6 "Colossus and the Rise of the Modern Computer," in Colossus: The Secrets of Bletchley Park's Codebreaking
Computers, ed. Jack Copeland (New York: Oxford University Press, 2006)

7 http://www.codesandciphers.org.uk/lorenz/rebuild.htm

8 Martin Campbell-Kelly and William Aspray, Computer: A History of the Information Machine (New York, NY: Basic
Books, 1996), 99-100. The more recent third edition retains the same text (p.82).

% Paul E Ceruzzi, A History of Modern Computing (Cambridge, Mass.: MIT Press, 1998), .
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historians shaping broader narratives on the emergency of modern computing. This is in part because of
an enduring vagueness surrounding the question of what Colossus actually did. Randell’s early
characterization of the machine as both “special purpose” and “programmable” was based on
fragmentary evidence and oral testimony from veterans of the project. To the best of our knowledge,
neither Randell nor any other scholar has attempted to define specifically what “programmable” means
in this context.

This characterization has endured; for example the Wikipedia page on Colossus currently describes it as
“the world’s first programmable, electronic, digital computer.” In his recent history of the relationship
between computers and cryptography, Paul Gannon reshuffles the adjectives slightly: “Colossus can be
defined as an, (sic.) electronic, binary/logic-processing, programmable, specific-purpose machine.”*°

Yet it is far from clear what “programmable” means in this context. The usual distinction is between
computers that are “general purpose” and can be reprogrammed to do different kinds of tasks, versus
those that are “special purpose” and run a particular program. For example, the embedded
microprocessors in DVD players, cash dispensers, or airbag units are the modern descendants of early
special purpose computers built for tasks such as missile guidance or toll collection. Colossus is, to our
knowledge, unique in being widely characterized as both special purpose and programmable. While a
great deal of new information has become available about the specific functioning and use of Colossus,
thanks to declassification of archival records and the work done by the rebuild team, no systematic
effort has been made to reevaluate the position of Colossus as a programmable special purpose
computer.

Was Colossus a Computer?

Since its rediscovery in the 1970s, boosters of Colossus have no doubt that it was a computer, indeed
that it was the first and most important electronic computer. Given this, we were startled to notice that
Flowers himself remained reluctant to call Colossus a computer, preferring the different and in our view
more interesting characterization of Colossus as an “electronic processor.”

Only many years after the Colossus machines were shut down did people begin to call them computers -
- we certainly found no archival evidence that Colossus was ever called a computer during its
operational lifespan. This sets Colossus apart most of the pioneering electronic computers of the 1940s,
which were usually named either as computers (the “C” in ENIAC stood for “Computer” as did the “C” in
EDVAC) or calculators (the “C” in machines such as EDSAC and IBM’s SSEC). This is because the new
machines replaced the labor of humans, whose job title was “computers.”!! They were often known as
“automatic computers,” just as machinery that could direct the flying of a plane was called the
“automatic pilot” because it carried out some of the tasks of a human pilot.

Computers carried out lengthy mathematical tasks, often involving thousands of individual
mathematical operations. This drew attention to their ability to move from one operation to the next

10 paul Gannon, Colossus: Bletchley Park's Greatest Secret (London, UK: Atlantic Books, 2006), P.433?

11 While we know of no evidence that Colossus was called a “computer,” some British codebreakers were known as
“Computor Clerks,” or sometimes simply as “computors.” According to Michael Smith, “This curious title had
nothing to do with electronic computers... but was an echo of an old War Office covername for cryptanalysts —
Signal Computor.” Michael Smith, The Secrets of Station X: How the Bletchley Park Codebreakers Helped Win the
War (Biteback Publishing, 2011),
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without human intervention. George Stibitz built a series of pioneering tape-controlled computers at
Bell Labs during the 1940s. His 1945 definition captures the contemporary understanding of a computer
as something able to perform automatically a sequence of operations (“some or any of” multiplications,
divisions, additions, and subtractions) storing the intermediate results from earlier operations so they
could be further manipulated by later ones.'? More complex operations, such as square roots,
logarithms, and trig functions, were handled in some early machines with special hardware and in
others by specifying the appropriate string of elementary operations. Many of these machines were
designed with table making in mind, so that the machine would crank out results for one set of
parameters after another by constantly repeating the same processes. Colossus, unlike these other
machines, was not built to carry out numerical computations and could not use the results of one step
as input for a subsequent step. 13

There is a popular misconception that Flowers was keen to work with computers after the war but was
somehow unfairly thwarted. One anecdote, currently featured on his Wikipedia page, states that
“Flowers applied for a loan from the Bank of England to build another machine like Colossus but was
denied the loan because the bank did not believe that such a machine could work. He could not argue
that he had already designed and built many of these machines because his work on Colossus was
covered by the Official Secrets Act.” This is implausible for several reasons, one being that as a central
bank the Bank of England does not make loans to entrepreneurs. But, as borrowing money to build a
privately codebreaking machine would not make much sense, it reflects an assumption that Flowers was
keen to build general purpose computers.

In reality Flowers did not see Colossus as a computer and was never particularly interested in
computing. There is little reason to doubt that he would have been able to find employment on a
computing project after the war if he had desired this. Others who worked on classified electronic
projects during the war played key roles in late-1940s British computer projects, including Alan Turing,
Max Newman, Freddie Williams, and Tom Kilburn. Many years later he did complain that lacking
“administrative or executive powers” he was unable to convince others to let him build on his wartime
achievements, unlike others such as Turing and Newman who found “positions where they could use
their knowledge effectively without disclosing the source.” But he again made clear that his desire had
been to revolutionize telecommunications, not computing: “l was in a similar position in the telephone
industry—except for having no power or opportunity to use the knowledge effectively.”4

In fact Flowers had an opportunity to work with Turing and Newman in 1946 when Dollis Hill agreed to
build a computer, ACE, for the National Physical Laboratory according to Alan Turing’s design. Charles

12 Stibitz, 1945 AMP report “Relay Computers.” ML27-b3 in his papers at Dartmouth College.p.2

13 Jack Good, a veteran of Colossus practice at Bletchley Park, later claimed that, if appropriately configured,
Colossus could almost have carried out a multiplication but that this would not have been possible in practice
because of constraints on what could be accomplished in a processing cycle. We have no reason to doubt this,
though it would presumably have required special settings of the code wheels and message tape and been, even if
possible, a rather inefficient alternative to a desktop calculator. This fact has been offered as proof of the flexibility
of Colossus, which in a sense it does attest to: a device designed without any attention to numerical computations
could almost have multiplied thanks to the flexibility with which logical conditions could be combined. Yet it also
proves the very real differences between Colossus and devices designed for scientific computation. Multiplications
were vital to computations, and a device that could not multiply would not, by the standard of the 1940s, be
termed a “computer “or “calculator.”

14 Cite D-Day chapter in Copeland compendium.
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Darwin, the laboratory’s head, wrote to the Post Office’s Engineer in Chief promising tens of thousands
of pounds for the project. Secrecy was no problem: “it works using principles developed by your staff
during the war for a certain Foreign Office project, and we want to be able to take advantage of this,
enlisting the help of your Research Department, and in particular of Mr. Flowers who has much
experience in working out the electronic side of it.”*> NPL also approached BTM and TRE, the other
wartime machine building partners of Bletchley Park, for help with the project.

Yet Dollis Hill let this work slip behind other projects, assigning it nothing like the priority it had given
Colossus. When it withdrew from the contract it had carried out only six hundred pounds of billable
work, a small fraction of what had been planned.® It is not clear from surviving sources whether Flowers
himself was instrumental in making the decision to prioritize other projects, but there is certainly no
evidence that he felt anything like the same passion for ACE that he did for Colossus. His subsequent
career trajectory confirms that electronic telephone exchanges, not computers, were Flowers’ driving
force. In his talk, he complained that within exchanges electronics had most prominently, as of 1977,
been used by Bell Labs to have a general purpose computer control the switches connecting together
analog telephone lines, which he termed the “structure” of the exchange. He told the audience that he
had spent his career urging that electronic “processors” be used to replace the analog switches, rather
than control them, so that the “structure” of the exchange would itself become electronic. Flowers
noted the “irony of recent events which credit me with some pioneering work on computers, when it
was my refusal to use a computer when everyone else said it was the right thing to do that which led to
my downfall in the telephone industry.” This ultimately led to his departure from the Post Office when it
seemed that this would give him an opportunity to develop his exchange technology elsewhere — a
conspicuous contrast with his decision to remain with the Post Office after work stalled on ACE.

When, in 1977, Flowers gave one of his first public talks about Colossus, after news of the machine had
begun to reach the public, he related that “it is now said that during the Second World War | was
responsible for the production of the world’s first electronic digital computer,” yet cautioned that “if so,
that was an accident incidental to the solution of a problem.” ¥’ He himself preferred to situate Colossus
within the history of telecommunications processing, saying that the challenge was “to break through to
a new switching technique which we called and is now universally known as electronic, but no thought
of computers was in our minds.” Instead Flowers preferred the broader concept of a “data processor,”
arguing that claims for Colossus as the first computer came “to the surprise of those concerned who
thought of it as just another processor.” Telephone exchanges were themselves processors, in this
sense, and Flowers spend most of his talk discussing them.

He cast Colossus as the first of these electronic digital processors, seeing it as extension of his work on
electronic telephone exchanges. Going back to the years before the outbreak of war, he related that
“under construction at Dollis Hill... was a processor using thermionic valves for high speed processing
with maximum reliability, the processor being time shared among numerous smaller processors using
valves relays [check] for simple and slow operations...”

The closest he came to claiming Colossus as a computer seems to have been this 1983 passage:
“Colossus had features now associated with digital computers—semi-permanent and temporary data

15 Dawin to Angwin, 22 Feb 1946, NPL PDF
16 Another citation in the NPL PDF. There are several relevant documents in Copeland’s online archive.
171980 NPL publication
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storage, arithmetic and logic units including branching logic, and variable programming—that may
justify its being regarded as the first digital computer.” In the rest of that paper Flowers consistently

calls Colossus a “machine” rather than a “computer.”*®

Decades after others won him recognition as an inventor of the computer, Flowers himself
conspicuously avoided calling Colossus a computer. His posthumously published chapter “Colossus”
opens with the sentence “Machines such as counters, computers, and Colossus process information.”
That choice of words suggests that he viewed Colossus as akin to both counters and computers, but not
as itself a computer. In the rest of the article he uses the word “machine” rather than “computer” when
talking about Colossus.? In another posthumous chapter, “D-Day at Bletchley Park,” Flowers
consistently favored phrases such as “electronic machine” and “processor” to describe Colossus. In that
chapter, Flowers again attributed to others the idea that Colossus was a computer rather than claim this
himself.

[A]cademics interested in the history of computing have recognized that Colossus was the
world’s first electronic computer. It was not designed as a computer: computers had not yet
been invented. It resembled a modern computer about as much as George Stephenson’s Rocket
locomotive of 1829 resembled the Royal Scot and other steam locomotives of the twentieth
century. The basic technology used in a modern computer—data storage and retrieval, ultrafast
processing, variable programming, the printing out of the results of the processing, and so
forth—were [sic.] all anticipated by Colossus, some of it by as much as ten years.

Note that his assertion is “computers had not yet been invented,” not “I invented the computer.” What
Flowers does claim credit for is the development of many of the key digital electronic techniques later
used to build computers.?’ We should perhaps take him more seriously in this respect.

What Is a Program?

The concepts of program and programmability have received surprisingly little systematic historical
examination.?! The term “program” does not seem to have been applied to automation before the
ENIAC project of the mid-1940s. Its initial use here mirrored the broader sense of the word, such as a
concert program, program of lectures, or program of study. In each case the program is a description of
a number of actions to be performed in a particular order. The concert program, for example, specifies a

18 Flowers, "The Design of Colossus," P.252. His assertion that Colossus incorporated “branching logic” is
guestionable, and the meaning of “variable programming” is unclear. He also asserts that “Colossus was
comparable in conception and processing power with the ENIAC” which reflects an understandable lack of
awareness of ENAIC.

19 "Colossus and the Rise of the Modern Computer," in Colossus: The Secrets of Bletchley Park's Codebreaking
Computers, ed. Jack Copeland (New York: Oxford University Press, 2006)

20 While we could find no article or talk by Flowers in which he calls Colossus a computer, Jack Copeland has made
prominent use of quotations he attributes to unpublished oral histories with Flowers in which Flowers is less
ambivalent.

2! David Alan Grier, "The Eniac, the Verb "to Program" and the Emergence of Digital Computers," IEEE Annals of the
History of Computing 18, no. 1 (1996) "Programming and Planning," IEEE Annals of the History of Computing 33,
no. 1(2011) We share Grier’s general sense that the idea of “programming” was introduced to computing in the
ENIAC project, but are not convinced by his suggestions adoption of the term reflected a desire to “establish the
economic importance of automatic computing” or that the alternative term “planning” reflected a specific
commitment to Taylorist conceptions of production engineering.
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number of pieces of music to be performed by an orchestra on a particular evening. In each of these
cases the programmer determines which of a set of possible actions should be performed and in what
sequence they should be carried out. A television network programmer is responsible for choosing and
sequencing shows to produce a schedule.

Automatic computing machines could switch from one mathematical operation to the next without
human intervention. So in that sense every automatic digital computer was carrying out a program of
operations, though that specific term was not always used. Most of the first generation of automatic
computers, built during the early 1940s, relied on paper tape to control the operations performed,
providing mechanisms for the unit reading the tape to direct the operation of the arithmetic units. This
was not in the least novel. Player pianos and automatic looms had coded control information as holes
punched in tape since the nineteenth century. Charles Babbage had proposed the use of a similar
control mechanism for automatic computation when designing his never-built Analytical Engine.

Various terms were used to describe these automatic controls. Babbage followed standard
mathematical terminology in calling the actions carried out by his planned engine “operations.” He
called the cards holding them “operation cards.” The Harvard Mark | computer, built by IBM for Howard
Aiken’s Computing Laboratory, was controlled by a paper tape. The patterns punched onto the tape
were called “codes,” which appears to be the origin of “coding” in this context. The word “sequence”
was often used to describe the content of a particular strip of paper tape, which usually represented
either a loop (in which case the ends of the tape were joined to create a physical loop) or a subroutine.
This ability to sequence and automatically perform operations was central to the new machines,
something recognized in the titles IBM gave the Harvard Machine (the Automatic Sequence Controlled
Calculator) and to its more ambitious successor (the Selective Sequence Electronic Calculator). Whereas
the earlier machine had relied on human operators to change tapes once a loop terminated or a branch
was reached, the SSEC had dozens of tape readers and could automatically shift control between them
as needed, thus “selecting” the appropriate sequence to perform.

References to “programming” appear for the first time in the ENIAC project. ENIAC differed from the
earlier computers in two important respects. Firstly, it used vacuum tubes rather than
electromechanical relays for its arithmetic and memory circuits. These could switch thousands of times
faster. Secondly, to exploit this speed, its designers fully automated its control. Rather than read control
sequences from tape, its control circuits were driven by a network of wires carrying control pulses
between different parts of the machine. The arrival of a control pulse triggered an action, the details of
which were set using switches on the unit in question. The terms “programming” and “program” were
not originally used to describe ENIAC’s closest analogs to their modern senses: the act of configuring the
machine to carry out a particular problem and the resulting configuration of wires and switches. Instead
these were called, respectively, “setting up” ENIAC and a “set-up.”

Instead, the word “programming” was enlisted to describe aspects of ENIAC’s control mechanisms. As
well as calling its control signals “program pulses,” a June 1944 progress report described two ENIAC
accumulator units as being “automatically programmed to receive the multiplier and multiplicand”
when a program pulse triggered the multiplier unit to which they were attached. The adoption around
the same time of “programmer” as the name for a simple mechanical control unit of an automatic
washing machine reflects a similar usage — turning the dial to a particular point triggers the performance
of a particular sequence of washing operations (spin, rinse, wash, and so on). Echoing this, a primary
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meaning of “program” on the ENIAC was to describe a single operation set up on one of its units. What
were being programmed were the operations of the internal circuitry of that unit.

By late 1945, however, the ENIAC team was beginning to talk of “programming” in something much
closer to its modern meaning. The meaning of the verb “to program” quickly shifted from describing the
action of the control circuits responsible for triggering operations at the correct time to describing the
work of the humans devising such sequences. In late 1945 a letter from one of the project’s leaders
noted that “the EDVAC will contain a large number of units capable of remembering programming
instructions, “to be copied from tape“ before the actual program is started.”?? Similar terminology was
applied to ENIAC; a report described the practices used in “planning a set-up for the ENIAC” as
“programming techniques.”?3

The new meaning of program seems to have been connected to the new approach to automatic control
formulated for EDVAC, the follow-on to ENIAC commissioned in the summer of 1944. John von
Neumann’s celebrated “First Draft of a Report on the EDVAC,” circulated within the ENIAC team in April
1945, combined the established approach of controlling a computation by reading a sequence of coded
instructions with the novel idea of storing these instructions in a large, addressable memory using the
same mechanisms employed to store and manipulate data. While von Neumann called these
instructions “code” and the process of producing them “coding” they were more commonly called
“programs.” The Moore School team adapted its existing use of “programming” to the new approach,
altering its meaning in the process.

The adopting of “programming” in computing was a simple extension of its everyday meaning in other
contexts. This is very similar to the meaning of “program” in other contexts — for example the work of a
radio programmer who selects and schedules programs for broadcast, or the programming of a series of
concerts. “Programming” an automatic computer involves the automatic execution of a series of
operations over time. Likewise the other uses of the words “program” and “programming it involves a
selecting not just which things should happen but also when they should happen. For example, a
particular orchestra plays different pieces over the course of a concert. A particular lecture hall hosts
different speakers over the course of a lecture series. A particular student takes different courses each
semester over the course of a degree program. A washing machine fills with water, soaks, agitates,
empties, rinses, and spins when the appropriate program is selected.

We therefore resist the idea of applying the idea of “programming” to configuration mechanisms that
do not sequence different operations over time. For example, punched card tabulating machines could
be configured to ignore some fields on each card they processed and to tally others to create totals and
subtotals based on the data punched on a card deck. By the 1930s these configurations were rather
complex. But the specified counts and evaluations were carried out in an identical way when each card
was read. So we do not think that the concept of “programming” is applicable here since there was no
succession of activities over time. In contrast, IBM’s 604 Electronic Calculating Punch, introduced in
1948, could be set up (via a plug board) to perform a sequence of up to 40 steps each time a card was

22 H. Goldstine to H. Curry, 3 October 1945, in the collection “ENIAC Patent Trial Collection” in the University of
Pennsylvania archives.

23 ] Persper Eckert et al., Description of the Eniac and Comments on Electronic Digital Machines. Amp Report
171.2r. Distributed by the Applied Mathematics Panel, National Defense Research Committee, November 30
(Philadelphia, PA: Moore School of Electrical Engineering, 1945), .
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read. This would constitute a program, as the operations were performed sequentially rather than
simultaneously, and in fact the earliest known use of the term “stored program” is to distinguish
between a plug board program of this kind and one stored in an addressable computer memory.?

Likewise, in analog computers, such as differential analyzers, each part of the machine carried out the
same operation throughout the course of the computation. There was no separation of data from
control, and hence no sense in which one part of the machine was “programming” another to stop what
it was doing and to start something different.

Some machines also allowed the mathematical units to direct each other. The Harvard Mark |, for
example, included dedicated units to perform complex mathematical operations such as logarithm and
sine functions. These were not self-sufficient, but instead directed the machine’s other units to perform
the necessary series of operations over the course of a minute or so. It seems reasonable to call this
sequence of operations a “program” even though the precise term does not appear in contemporary
sources.

So What Does “Programmable” Mean?

What about “programmable,” the term applied by Randell and others to Colossus. Whereas “program”
has a long history, “programmable” appeared only after the spread of the electronic computer. The
Oxford English Dictionary shows no usage prior to 1953, in which year it documents the appearance of
two distinct but related meanings: “Capable of being scheduled in accordance with a programme of
events” and “Of an apparatus, operation, etc.: capable of being programmed.” The OED assigns a still
later date, 1964, to “programmability” which it defines as “the property of being programmable.”

It's clear from this that the idea of “programmability” is significantly newer than the concepts of
“program” or “programming” and that it is used primarily in the context of computerized control
systems. Merely following a program is not enough to make something programmable. For example, an
automatic washing machine incorporates a “programming unit” to control the sequence of operations it
carries out.

Washing machine users can choose between several different programs by turning a control dial to the
desired starting point, and on many models can also push buttons to set parameters such as “light load”
which modify the operations performed. Yet the idea that a washing machine is “programmable” seems
odd, and it is very unusual to talk about “programming” a washing machine.?> The conventional term is
that a user “selects” a program cycle.

24 Thomas Haigh, Mark Priestley, and Crispin Rope, "Reconsidering the Stored Program Concept," IEEE Annals of
the History of Computing 36, no. 1 (2014)

25 Google currently finds 94 uses of the exact phrase “programmable washing machine” which suggests that it is
rarely used.
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On this typical washing machine dial, users select one of three predefined programs, such as the normal
program which runs as follows: hot, warm, cold, rinse, spin, off. Users can also skip to a particular point
within each program, for example starting the normal wash program at the beginning for heavily soiled
clothes or omitting the hot wash operation for regular soilage.

Likewise, in the computing context one would not usually call the act of choosing a program and running
it on a computer “programming.” Such a usage might resonate with the original ENIAC sense of
programming, in which directing the operation of a piece of machine was programming it, but the
concept of “programmability” appeared only after our modern sense of a computer program was well
established. Thus the idea “programmability” has historically been applied only to a specific, narrower
and later sense of “program” and, as the OED points out, means that a user can establish a schedule of
events.

Historically, there doesn’t seem to have been much discussion of “programmability” in the 1960s there
was little need to distinguish rigorously between programmable and non-programmable computers.
Anything described as a computer was understood to be programmable. The term gained new currency
in the 1970s following the introduction of powerful electronic calculators, where users could specify and
store sequences of operations to be carried out automatically. Were these computers? The concept of a
“programmable calculator” was introduced, with the understanding that it described a class of portable,
personal machines that could be programmed by their users but which was more limited than true
computers.?® For example, a 1976 report “Calculators and the Computer Science Curriculum” reported
that cheaper calculators are not “programmable by the user” even though “they do contain stored
programs and can execute these programs” for example by pressing the square root key. Thus “there
seems to be a clear difference between these calculators and what most computer scientists commonly
think of as computers.” In contrast, “programmable calculators” had “sufficient memory to store a
series of key strokes (that is, a sequence of machine language instructions) and then to execute the
program... At the higher price levels (but well under $1,000) such machines approach the ENIAC in

26 This was more of a practical and marketing distinction than a theoretical one, as some programmable calculators
had Turing complete programming languages.
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capability, and will soon exceed it.”?’ That was the same year in which Randell originally described
Colossus as “programmable” and it seems reasonable to suppose that he had something similar in mind.

We conclude that the concept of “programmability” as applied to a computer requires not only that the
computer carry out a sequence of distinct operations over time, i.e. to follow a program, but also that it
allows its users to define new sequences of operations rather than just choosing between existing
programs or supplying parameters.?®

Was Colossus Programmable?

Colossus certainly carried out a program, in that the interaction of its control circuits with the message
tape caused it to carry out different operations over time. A special code punched at the end of the
message triggered control signals to reset its counters and, if a predefined threshold had been reached,
to print the code wheel settings being evaluated and the counts obtained. Each message was followed
by a blank sequence in the tape, which gave Colossus time to increment the uniservos holding the initial
code wheel settings. These settings were then used to fix the positions of the electronic code wheels, so
that when the tape spun round again to the special character that marked the beginning of the message
the machine was ready to evaluate the message against the next possible combination of wheel
settings.
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The reconstructed Colossus 2 at the National Museum of Computing (Wikipedia photo)

27

28 Note, however that the OED also offers the definition for programmable “Of a control or facility: capable of
being assigned a function by the user.” This is presumably to capture the idea, for example, of a programmable
function key or remote control unit in which the user is choosing a function but there is no obvious sequence
involved.
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Typevriter

Bedstead

Tony Sale’s schematic — most controls are on rack C (far left) and racks K and J

Many years later, Harry Fensom, a senior member of the team that designed Colossus, reconstructed
from memory the series of human and automatic actions it took to guide Colossus through a typical run.
As he mentioned, “One panel of Colossus contained the so-called ‘master control.” This acted as a
program sequencer, guiding the run through all its steps, from switch-on, to print-out, and then on to
the end of the run. Flowers designed the routine, or program, carried out by the master control, using a
timing diagram and logic diagrams that had almost a modern flavour...”?

He documented thirteen manual actions to get the machine ready — loading a message tape, configuring
the plug board with the appropriate logical inputs, setting the wheel start positions, and so on. These
were followed by twenty automatic steps, such as resetting wheel positions, waiting for the message
start signal, and comparing the counts to the thresholds selected by the operator. The sequence
included inner and outer loops. The inner loop was followed each time a character was read from the
message, the outer loop repeated each time the entire message had been read to reset the totals and
increment the wheel start positions.

To characterize Colossus as “programmable,” however, is to suggest not only that it followed a program
but also that the program it ran could be changed without rebuilding its hardware. Notice that Fensom,
guoted above, characterized Colossus as running a single program, designed by Flowers, rather than
many different programs written by its users.3’ We think he was right, although this rests on a difficult
question: what kinds of modification to the program executed by a machine are sufficient to make that
machine “programmable?”

This is not a trivial issue. Colossus was highly configurable, and so could be used for many different tasks
— a tribute to the foresight of Flowers’ team and its close liaison with Newman and his group at Bletchley
Park. Colossus was designed with wheel setting in mind, which began by taking the difference between
two consecutive message bits on two of the five channels and comparing this with the signals coming
from the corresponding Chi wheels. Once settings for the first two wheels were determined, two more

29 p, 303 of Colossus compendium.

30 Flowers himself, in 1983, described Colossus as following a “master control program,” which was fixed by the
control unit, but also called Colossus configurations set up with jacks and switches “programs” and the person
configuring Colossus a “crypanalyst-programmer.”
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runs would identify the settings for the other three wheels. The codebreakers found many other ways to
use Colossus for different parts of the coding job. For example, one way to determine whether
decryption settings were correct was to count the number of times each letter appeared in a message.
Colossus could be set to look only at the characters on a message tape (ignoring the simulated cipher
wheels entirely) and to count the frequency with which each appeared. Unencrypted text is made of
words and, as any Scrabble player knows, the distribution of letters in natural language words is highly
irregular. In a well encrypted bitstream, however, all codes are equally likely.
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This diagram abstracts away from the physical complexity of Colossus 2 to reveal the architecture of its
control system, including the main user-configurable settings.
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Settings configurable by the user included:

In logical “module 1,” which emulated the Lorenz cypher wheels (physically Rack R for the bit settings,
Rack S for the steppings)

e Plugs to set the initial wheel start positions

e Switches to control the stepping of these initial positions each time the message was restarted

e Pins to set the bit patterns on the simulated wheels (known as “triggers”)

e (something) to determine which code wheel’s output was buffered so that five wheel
combinations could be evaluated simultaneously against the message

On Colossus 2 the corresponding physical units were found in Rack J (the selection panel, span counter,
and jack field), Rack K (the Q panel for switching) and Rack W (the electronics for the simulated wheels).
These correspond, with greater convenience and efficiency, to the options available in what was called
the “combining unit” on Heath Robinson, a kind of prototype for Colossus. So we will use that phrase to
combine their collective capabilities.

e Switches to determine which of the many possible inputs were fed through to the switch panel,
and whether to feed raw values or “deltas” between successive bits

e Wires set on the plug board, to run selected inputs through particular combinations of logic
gates

o Keys set on a switch board, to run selected inputs through particular combinations of logic gates

e Connections from particular logic gates to any of the five counters

e Span counters, to specify which sections of the message should be included in the count (Not
shown on diagram)

In logical “module 3,” which included the counters (Rack C) and printers

e Rotary switches to set the threshold above which the contents of a counter, and corresponding
initial wheel positions, should be printed

The logic circuits in the “combing unit” were the most flexibly configurable part of Colossus, and
underpin characterizations of Colossus as programmable. Plugboard cables and, on later models,
switches used to select inputs and run them through logic gates to generate pulses for the counters. For
example Benjamin Wells, who has looked in detail at Colossus, wrote that “tightly refined codebreaking
algorithms were implemented in plug-wiring and switches. But the crucial story is that the same

machine supported many different algorithms via flexible programming.”3!

Users had a great deal of flexibility in configuring its circuits to run inputs from the message tape and
electronic code wheels though different logic gates to combine them in different ways for different
purposes. Signals from the electronic simulated code wheels and the message tape were available as
inputs. The message tape appeared as five separate binary channels, as did each of the two main sets of
code wheels. The Colossi also provided inputs representing the differences between two consecutive
character positions and, in later models, five consecutive positions of one of the electronic code wheels.
The results of these logical combinations could be fed into different electronic counters, the contents of
which would be printed or not printed after the message was fully read according to thresholds set by

31 Compendium, p. 136.
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the user. After each reading of the message tape the initial code wheel settings would be stepped to a
different combination according to switches configured by the user.

Operators plugged wires (or, in later models, set switches) to combine these inputs. This let them
specify a truth table, making particular logical connections between the input pulses and the output fed
to each counter. Colossus included circuits to implement a variety of Boolean logic operations, including
XOR and NOT. By running pulses through several of these circuits other logical conditions could be
specified. For example, input_1 OR input_2 could be implemented as NOT(NOT input_1 AND NOT
input_2).32

Flexible as the logic circuits were, they performed Boolean logical comparisons rather than specifying
algorithms or performing numerical computations. 33 Carrying out a computation involves sequencing
operations over time, performing step after step after step. In contrast, the logical circuits of Colossus
were wired to evaluate a complex logical condition in a single step. A particular combination of inputs
was applied, and this either triggered an output pulse (representing a 1 in the corresponding truth table)
oritdidn’t (a 0 in the corresponding truth table). The output was relayed to a counter, which either
incremented or didn’t increment. The logic circuits then reset, and processed the next combination of
inputs. They performed one complex step repeatedly, but did not sequence operations or maintain any
state information from one input character to the next.3* Each time a character was read from paper
tape a particular combination of inputs was fired and an output pulse was, or was not, generated to
increment one of the counters.

Computer scientists use automata theory to distinguish between the fundamental capabilities of
different kinds of automatic devices. The most advanced, including programmable computers from
ENIAC onward, are equated with Turing Machines. Push down automata are less powerful than Turing
machines, and finite state automata are less powerful than push down automata. As their name
suggests, even finite state automata preserve state information from one operation to the next. In
contrast, the “combining unit” of Colossus did not preserve state information and thus was not an
automaton of any kind. The technical term for this kind of capability is “combinational logic” or “time-
independent logic.” That’s a revealing term here as the combining unit performed only one evaluative
step: inputs were applied and an electrical circuit was either completed, to output a pulse, or not
completed, in which case no pulse was immediately output.

The network of logic gates configured on Colossus’s combining unit by its user had the effect of
implementing a logical truth table, specifying for each combination of true/false inputs whether or not a
true output should be produced. Its function was in many ways analogous to that of a punched card
tabulating machine, in that it considered a stream of inputs and incremented the appropriate counter

32 GRT reprint p. 323.

33 On a technical level the distinction might be challenged, as binary arithmetic is built from trivial logical
operations. For example, adding two bits is a logical XOR combined with a carry. Which raises a question --— could
Colossus have been wired to do the carry part — output of one channel as input for another? That would only work
if everything could be evaluated simultaneously.

The need to consider multiple characters of the input message was initially dealt with by building an electronic
buffer so that two positions could be read simultaneously as input. In later versions of Colossus, a switch selected
between inputs of actual message data or differences between consecutive character positions. Later versions of
Colossus also buffered settings for one of the code wheels, so that up to five positions could be evaluated
simultaneously. 34
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whenever the input data satisfied one of the conditions that had been set. Colossus allowed for rather
more complex logical conditions than traditional tabulating machines, but it similarly transformed and
counted streams of input data.

It has sometimes been claimed that Colossus possessed the capability for conditional branching, as a
result of which computational mathematician S. Barry Cooper speculated that Colossus “may well be
Turing complete” (i.e. could handle any problem solvable by any computer if given sufficient time and
storage space).*® Claims that Colossus implemented conditional branching seem more concerned with
checking off a box in a comparison table than illuminating its actual architecture. Colossus certainly
included circuits that would trigger an action only when particular data was read — for example resetting
the machine when the end of message code was reached. But no configurable control connections could
be made between different parts of the machine. Data pulses output from the combining unit were
routed to counters, meaning that the only conditional action that could be specified using the logic
circuits of the combining unit was to either increment or not increment each counter given particular
inputs. This could not trigger any kind of change in the sequence of operations carried out. Once the end
of the message was reached, other circuits would compare the total stored in the counter against the
pre-selected threshold value to determine whether the totals and initial wheel positions should be
printed. But Colossus could not carry out any other conditional action based on these totals, for
example, by connecting a counter back to its uniservos so that the wheel start positions would change
based on the value obtained in the previous cycle. No data of any kind, other than the uniservo settings,
was retained in memory from one cycle of the message tape to the next.

We do not believe that the ability to reconfigure combinational logic to implement an arbitrary truth
table should be considered evidence of “programmability” because it does not truly change the
program, i.e. the sequence of operations performed by the machine. It merely provides a parameter
used in one of those steps. Likewise the assertion made by Wells that different “algorithms” could be set
up is misleading, since an algorithm expresses a computational procedure as a step-by-step series of
operations carried out over time. Colossus was not programmable, according to our definition, because
the basic sequence of operations performed, the program, could not be changed by the users.

Was Colossus Binary?

Colossus is often called a binary computer, sometimes with the implication that this made it close to
modern computers, and hence in at least some respects more advanced, than computers such as ENIAC
that used decimal number representations. Paul Gannon believed that because the “modern computer
can be defined as an electronic, binary/logic-processing, conditional-programming, stored-program-
control, general-purpose machine” and Colossus, unlike ENIAC, was also a “binary/logic-processing,
programmable” machine “it can be seen that Colossus was closer to the modern concept of the
computer than Eniac was in some significant ways.”® Echoing this, in The Innovators, Walter Isaacson
noted that “well before ENIAC... the British code breakers had built a fully electronic and digital (indeed

35> Machines as Data, 2015, cite.
36 Cite Gannon, circa p. 433.
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binary computer.” ENIAC, in contrast, “was not like a modern computer” to the extent that it used a
decimal system.%’

The connection of binary arithmetic with progress is rather dubious, as decimal arithmetic has some
advantages for floating point and remained a feature of many later computer architectures.?® The
deeper question, though, is whether it makes sense to call Colossus binary at all. In popular use, binary
is associated with the idea of representing information as a series of electrical pulses, conceptualized as
Os and 1s. Colossus certainly did that — its users spoke of “impulses” which corresponded to the “dots”
and “crosses” of the teleprinter alphabet. However all digital electronic machines signal information as a
series of pulses, this being the defining characteristic of “the digital.” ENIAC, for example, transmitted a
decimal digit as a series of pulses. The number four was transmitted as four pulses.

Computers stored and manipulated numbers, and what “decimal” and “binary” actually refer to is the
base used to represent these numbers: 10 for decimal and 2 for binary. The difference between binary
and decimal computers came in three main areas: the format used to store numbers in memory, the
format used to transmit them, and the design of the arithmetic circuits used to manipulate them. ENIAC
stored each decimal digit in a ring counter that could take one of ten possible positions. Each of its
accumulators held ten of these “decades”, and could therefore store a ten digit decimal number using
what was, from the viewpoint of the electronics required to build it, 100 bits of storage. This was
inefficient because only one of the ten bits for each digit would fire at a time. A binary computer could
store the same number more efficiently, using 34 bits of storage. Almost all later computers therefore
used binary representations to store numbers in memory, though many stored each decimal digit
separately (using four bits per digit) and continued to use decimal arithmetic circuits to manipulate
them. Computers stored and manipulated numbers of a fixed “word” length — 10 decimal digits for
ENIAC, somewhere between 18 and 36 bits in many early digital machines.

Most of the information manipulated by Colossus did not represent numbers and Colossus performed
logical transformations rather than arithmetic on its inputs. The message tape inputs represented
characters, but for most jobs Colossus took only one or two of the five channels and did not directly
consider the characters being encoded. The logical combination circuits did not store numbers at all.
Colossus also had nothing comparable to a word length, as numbers were not stored, retrieved, or
manipulated arithmetically. The inputs it processed were continuous.

It was able to count, i.e. increment a stored number. In fact three separate parts of the machine
counted, each in a different way. The electronic rings that emulated the physical encoding wheels of the
Lorenz machines were essentially a set of electronic counters of different lengths that advanced one
position at a time. A set of electronic counters incremented each time an output pulse was received
from the logic circuits in the combining unit, counting the number of matches achieved with the current
combination of settings. The uniservos that reset the start positions of the electronic counters after each
complete revolution of the message tape were themselves decimal counters advancing with each cycle

37 |saacson nevertheless considered ENIAC the most important of the early computers. Walter Isaacson, The
Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution (New York: Simon and
Schuster, 2014), 75 & 79.

38 Cite Kahan on floating point.
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of the message tape. These used decimal and biquinary representations.3® So in as much as Colossus
continuously repeated non-numerical logical operations on bitstreams of arbitrary length it does not
make sense to say it manipulated numbers in decimal or binary form. In as much as parts of Colossus
were acting on numbers, those numbers were stored in biquinary form and manipulated in decimal
form.

Conclusions — Why Should We Care About Colossus?

Colossus currently has a strange position in the historical literature on computing, lauded by its
supporters but largely ignored in overview histories. It is not clear to us that “computer” is the most
useful way of conceptualizing Colossus. We think that Flowers’ own, more nuanced, characterization of
Colossus as an “electronic processor” rather than a computer is essentially correct. Colossus was closer
to a digital signal processor than a computer. Its core electronic units performed real-time logical
transformations on two input bitstreams to yield an output bitstream (for the counters).

As Flowers proudly noted, Colossus certainly had many elements in common with early computers:
counters, electronic logic, a printer and an input tape. But its architecture and purpose were
fundamentally different. Colossus did not carry out computations, or have any capabilities for numerical
operations. This sets it aside from every other machine celebrated in the history of computing. Colossus
was a digital electronic device able to generate bitstreams electronically, to combine these bitstreams
with others read from paper tape, apply logical transformations, and count the results. For decades,
from the late-1940s to the 1990s, specialists and the public shared a fairly clear sense of what “the
computer” was. It consisted of a box holding a processor and memory, to which were connected storage
devices such as disk and tape and output devices such as printers. Over time the boxes shrank, they got
cheaper, and they spread from data processing centers into schools, offices, and homes.

Computers were far more visible than other forms of digital electronics during the 1970s and 1980s, and
invention of the computer was a much more visible honor than invention of the digital signal processor.
Making a case for the historical importance of Colossus meant shoehorning it into this tradition, which is
exactly what Brian Randell did when he won it a prominent place at the seminal 1976 Los Alamos
museum where the early agenda for the history of computing field was set. In his earliest public
statements on Colossus, Flowers himself saw his work as something quite different from computing and
instead situated Colossus within the context of early work on digital communication. We think he was
right, and that the modern proliferation of digital devices and the vanishing of “the computer” as a
distinct and coherent thing makes us better able to appreciate Colossus on its own terms. In an age of
digital audio and video, digital telephony, and digital data communications we can better appreciate the
importance of this development and see it, as Flowers did himself, more as a contribution to the
development of digital communication than to computing. It challenges us to broaden our focus, beyond
the traditional reading of the history of computing in the 1940s as a series of incremental steps toward
the “modern computer.” If there has been such a thing as a digital revolution then it involved more than
just computers, making Colossus an exemplary artifact of the early digital because of, not despite of, its
stubborn lack of architectural resemblance to a computer.

39 Biquinary representation, as used in the Colossus counters, took advantage of vacuum tube circuits that had not
just two stable positions but five. Using a two position counter and a five position counter for each decimal digit
allowed for ten possible combinations,
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Having more precisely defined and historicized the concepts of program and programmability, we also
challenge the prevalent concept of Colossus as “programmable.” As we saw, Colossus’s metaphorical
trophy comes as the first “programmable electronic” computer, setting it aside from the slightly earlier
“Atanasoff Berry Computer”, which is said to have been electronic but not programmable. Colossus
certainly followed a program in that it contained dedicated control facilities to sequence different
operations over time. But it was not, contrary to previous claims, programmable in that this sequence
could not be changed in any fundamental way. Configuring Colossus involved setting parameters, but
not defining new sequences of operations. In this it resembled the Atanasoff Berry Computer, which was
designed to accept parameters but followed the same basic series of steps to solve systems of linear
equations.

Early computing innovation is often discussed from the viewpoint of logic, stressing the mathematical
and theoretical insights behind the development of computer architecture.*® The progression from one
early computer to the next has been depicted as a series of abstract architectural innovations — first
conditional branch, first stored program, and so on. In turn these innovations have sometimes been
represented as mere practical instantiations of the work of Alan Turing on the mathematical logic of
computation.*

Colossus matters, but claims for its historical importance can and should be about more than the exact
string of adjectives to insert between “first” and “computer.” Broadening our frame of reference to
include other, recently declassified, wartime cryptography projects as well as the well-known computing
projects of that era suggests that Colossus was unique among the many wartime projects as a digital
electronic device employing unproven technologies that was built quickly enough and worked reliably
enough to make a significant contribution to the war effort.

Colossus worked, and unlike many even of the successful projects was designed and built very rapidly.
Many formerly secret electronic and microfilm-based machines discussed by Colin Burke in his recently
declassified book on the era, like the “Freak”, never worked reliably enough to be put to work on the
tasks for which they were constructed. Some, like the Superscritcher (and, among computers, ENIAC)
worked but were ready only after the war had been run. Most machines delivered before the end of the
war used proven electro-mechanical technologies. This made a tradeoff between risk and performance.
Yet even this did not guarantee they would be useful — Madame X, built by Bell Labs to tackle the
Enigma code, was physically a much larger machine than Colossus and was wonderfully reliable, but
design limitations caused by a lack of cryptologic understanding meant that it was of little use to the war
effort.

Lengthy delays plagued most computing projects during and after the war. Archival research has
convinced us that Colossus cannot be entirely separated from work on the “Robinson” series of
machines, but even so less than a year went by between the request from Newman for Dollis Hill to
work on what became Heath Robinson and Colossus and the delivery of the first Colossus to Bletchley
Park.

40 The classic contribution of this kind is Martin Davis, Engines of Logic: Mathematicians and the Origin of the
Computer (New York, NY: Norton, 2001), .

41 This assumption is critiqued in Thomas Haigh, "Actually, Turing Did Not Invent the Computer," Communications
of the ACM 57, no. 1 (2014).
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In its proper context, Colossus reminds us of something else: the enormous importance of professional
engineering work in distinguishing the relatively small number of successful projects from the greater
number of failures. This point comes across clearly enough in the established history of computing
literature. The most successful of the wartime and pre-War machines were built by well-established
engineering groups. The Harvard Mark | was built by IBM and drew on its long experience manufacturing
punched card machines. Bell Labs, which built a series of tape-controlled relay calculators, benefitted
from the Bell System’s world leading work in building reliable, automatic telephone switching systems.
ENIAC was built at the Moore School of Electrical Engineering and benefitted from the experience of its
faculty and students as well as from connections to the local electronic industry (and to Bell Labs, which
provided its relays and IBM, which provided its punched card peripherals).

In contrast, some other well-known early computing projects were constructed without access to
professional engineering networks and suffered. Konrad Zuse built his first mechanical computer, a one-
ton monster later dubbed the Z1, in his parents’ apartment immediately before the war. It had many
novel architectural features, but when he turned it on it seized up almost immediately. A replica he
oversaw decades latter suffered the same fate. Andrew Booth built several early computers on
shoestring budgets, but it is not clear whether his first, the Automatic Relay Computer ever worked at all
in its original form.*> The Atanasoff Berry Computer was built by an ingenious team and incorporated
many novel features, but its homebrewed input/output system (using sparks to burn paper) never
worked reliably enough to tackle the problems it had been built to solve. Unlike the successful projects
of the era its creators could not draw on experienced corporate engineering teams familiar with paper
tape or punched card storage.

Colossus also stood out for its reliability. Most electronic computers of the 1940s and early 1950s seem
to have spent a year or so between being finished and being reliable enough to carry out useful work.
ENIAC's creators were able to convince the patent office and several courts that ENIAC was not
sufficiently debugged to do any useful work until July 1946, more than six months after its first test use.
After being moved to Aberdeen at the start of 1947 it relapsed into unreliability, and for more than a
year struggled to carry out any useful work. Colossus, in contrast, was handling production work by
March 1944.%3

Like the Bell Labs team that worked on Madame X, Flowers and his colleagues were part of a
telecommunications engineering institution. They could draw on experience, internal engineering talent,
and existing relationships with component suppliers. Yet, unlike the more conservative designs of Bell
Labs, Colossus made extensive use of electronics for counters and logic. Flowers has insisted that these
technologies were not unproven to him, even if the rest of the world was skeptical, because of the pre-
War work he had been doing on electronic telephone switching. This commitment to high performance
engineering extended to the tape drive, which determined the performance of Colossus as a whole.
Dollis Hill drew on the expertise of F.O. Morell and other engineers in the Telegraph Group for help with
the engineering needed to move paper tape at unprecedented speed, and of course on the experience

42| recently saw a reference that Booth sought 10 for a later machine which led to some kind of commercial
development, so will be careful here.
431944 Mar 29, HW 62/6, De Grey to Radley notes Colossus 1 is “now shortly coming into full operation.”
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of Flowers in building electronic sensors of the tape drive (used with the Heath Robinson prototype) and
additional electronic units for Colossus.*

Flowers benefitted from his existing partnership with the codebreakers at Bletchley Park, which gave
him the feedback needed to optimize the usefulness of his machines. Experiences with Heath Robinson
shaped the capabilities of Colossus, and experience with the first Colossus led to substantial
modifications for its successors. Not only did Flowers lead a project to quickly build a reliable machine
from exotic parts, but he also built exactly the machine that was needed by Britain’s codebreakers to
deliver intelligence to Allied leaders.

This underlines the need for a historiography of the early digital that is concerned with use rather than
just invention, and for a history of computing fully integrated with broader historical analysis, such as
social, business, labor, and military history. From the viewpoint of programmability, though not of utility
or flexibility, Colossus seems to us fundamentally similar to another well-known special-purpose digital
electronic computer: the Atanasoff Berry Computer. The ABC was likewise driven by the rotation of a
physical medium, in this case a rotating capacitor drum memory rather than the paper tape used with
Colossus. It carried out a sequence of mathematical operations, performing some steps on a conditional
basis depending on the results obtained. Like Colossus the basic sequence of operations performed was
fixed, but its behavior would change based on the parameters supplied when the machine was
configured by setting switches and rewiring plug boards.** ABC and Colossus have traditionally both
been granted “firsts” which were distinguished as follows: the ABC was a special purpose non-
programmable digital electronic computer whereas Colossus, built a few years later, was also an
electronic digital computer but was in addition programmable.

For the traditional perspective on the historiography of each computing, the only thing separating
Colossus from the ABC is the questionable insertion of the word “programmable” between “first” and
“electronic computer.” We should perhaps be more impressed by the fact that one of these machines
was never able to carry out the work it had been built to do and was therefore abandoned in a
basement, while the other was spectacularly successful in use. The ABC’s logic and memory units
worked well, but to solve the equations it was designed to work with it also needed a memory to store
intermediate results. The paper based storage solution its creators came up with, burning paper sheets
to store bits, never worked reliably enough for the machine to tackle the problem it was designed to
handle: solving systems of up to twenty-nine simultaneous linear equations. It did nevertheless do some
useful work on much simpler statistical problems, but these were relatively trivial and would never have
justified the creation of such an elaborate machine.

Colossus, in contrast, proved highly effective when applied as intended and in fact proved able to carry
out a broader range of cryptographic tasks than originally intended. In doing so it made an appreciable
contribution to the course of the war. The precise impact of codebreaking on the outcome of the war is
hard to quantify. It's often claimed that breaking Enigma, or sometimes even the personal contributions

44 Copeland, p.295, attributes to Fensom the idea that Flowers got involved only after Morell’s telegraph group ran
into difficulties. We haven’t verified that with primary sources, but 1943 Mar 12, HW 14/70 does note that Flowers
and Morell were visiting Newmann together do discuss plans for what became Colossus as well as what became
Heath Robinson.

4 Cites on ABC.
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of Alan Turing, shortened the war by two years.*® We find that unconvincing, as did Max Hastings and
John Keegan in overview histories of the contributions of intelligence work.* Yet Colossus facilitated the
reading by Allied commanders of some of Nazi Germany’s highest level military communications,
including messages written by Hitler himself. It has been credited with a crucial role revealing German
troop positions and plans in Normandy before and after the D-day landings, so that Allied troops could
avoid German forces when landing and then head off attempted counterattacks in the months that
followed. If Colossus shortened the war by even a month, that would still make it one of the most
consequential machines in history. That, surely, is a more important basis on which to characterize its
importance to history.
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