
 1 

Dissertation Proposal: 

Ideology and Cultural Values in the NeXT/Apple “Cocoa” Software Developer 
Community: A History and Ethnography 

Hansen Hsu 
Cornell University, Science & Technology Studies 

Dissertations in Progress Session, SIGCIS Workshop, SHOT 2010 Meeting 

Background and Research Questions 

This study proposes to be a social history and ethnographic study of the “Cocoa” 
software developer community. “Cocoa” is the name of Apple’s object-oriented software 
platform at the heart of the Mac OS X desktop computing operating system, as well as iOS, 
the operating system powering the iPhone, iPad, and iPod Touch mobile devices. The ability 
for third parties to develop applications, or “Apps” for iOS devices using the Cocoa 
technologies has helped to drive the popularity of these devices. However, the community of 
third party developers with expertise in Cocoa predates the iPhone, and traces its history 
back to the 1990s. The Cocoa community is driven by cultural and technical values that 
shape the design of software Apps. As Apps are the primary interface between users and 
Apple’s devices, the values embedded in them are consequential for millions of users. 

Since its release in 2007, Apple’s iPhone device has been extremely successful. 
Culturally, the iPhone has become a status symbol and a cult brand, garnering such 
appellations as “the Jesus phone.” (Belk & Tumbat, 2005; Campbell & La Pastina, 2010) 
Recent statistics show the iPhone garnering 28% of smartphone marketshare.1 Since its 
debut the iPhone has helped transform the mobile phone market as competitors have 
emulated Apple in releasing smartphones with similar capabilities, form factors, and user 
interfaces. The iPhone’s most significant feature since 2008 has been the creation of a 
vibrant marketplace for third party applications. With over 250,000 “Apps” in Apple’s App 
Store compared to less than 100,000 written for Google’s competing Android smartphone 
operating system (Kane & Catan, 2010), despite the eclipse of Apple’s overall marketshare 
by Android-powered devices, the availability of Apps has become one of the major 
advantages of Apple’s iOS platform, which Google, Research In Motion, and other 
competitors have struggled to match. The explosion of Apps for the iPhone since 2008 was 
enabled in part by Apple’s “Cocoa” software development technology and by initial low 
barriers to entry and Apple policies that evened the playing field, allowing individual 
developers and even amateurs to initially compete with large corporations. Investors, 
entrepreneurs, and programmers seeking independence flocked to create or invest in iPhone 
software, resulting in a “gold rush” likened to the 2000 tech bubble. If the third party 
applications market is major source of the value of the iPhone versus its competitors, then 
the developers of those applications exert significant influence over the experiences of 
                                                 

1 Smartphones are mobile phones designed to have more sophisticated computing 
capabilities than standard mobile phones, including e-mail and web access. The marketshare 
leader currently remains Research In Motion’s Blackberry, with 35%. (Kellog, 2010)  

 



 2 

iPhone users. Although the “gold rush” has seen a rapid influx of new programmers to the 
platform, the core set of the community, which, along with Apple, upholds the cultural and 
technical values associated with the “Cocoa” technology, consists of developers who have 
cultivated expertise in Cocoa since its early days as “NextStep.” 

Cocoa and Mac OS X both trace their history to NeXT, the startup that Steven P. 
Jobs, co-founder of Apple, formed in 1985 after he was ousted from Apple’s board. In 1997, 
Jobs returned to the company when it acquired NeXT in order to replace Apple’s original, 
aging Macintosh operating system. NeXT had developed an innovative operating system 
called “NextStep,” whose most valuable feature was its object-oriented software 
development environment. In the 1980s, object-oriented programming (OOP) was an 
emerging software engineering paradigm within the software industry, having previously 
been promoted within academic computer science. In this new paradigm, data and the 
actions that operate on them (called methods, analogous to a “subroutine” in traditional 
procedural languages) are black-boxed in “objects”, in order to protect the data from 
accidental or malicious alteration. These objects performed actions by sending messages to 
each other, and a system called “dynamic binding” allowed the same message, sent to 
different objects, to invoke different behaviors. This allowed a model of software building 
that was less like “writing code” in the traditional sense, and more like building something 
out of a kit of Lego bricks. Many of the ideas in the dynamic OOP model had originated in 
Alan Kay’s Smalltalk language at Xerox PARC in the 1970s, where famously Steve Jobs 
acquired the idea of the graphical user interface for the Macintosh. In the 1980s and ‘90s, 
OO advocate Brad Cox promoted the notion that OOP would usher in a “software 
industrial revolution,” solving the “software crisis” that had plagued the industry since the 
1960s by creating a market for interchangeable objects that could be purchased off-the-shelf 
and easily plugged into one’s own software.(Cox, 1990a, 1990b; Ensmenger & Aspray, 2002) 
Though popular with academics and finding a small niche in banking and custom software 
development, Smalltalk’s adoption in industry had been hampered by a lack of compatibility 
with most existing systems, so Cox created a new, hybrid language called “Objective-C,” 
marrying Smalltalk’s OO features with procedural C, one of the most popular languages in 
the industry. NeXT adopted Objective-C as the basis for its object-oriented “framework”, or 
software development platform. After Apple acquired NeXT and made NextStep the basis 
for Mac OS X, it renamed this framework “Cocoa,” to differentiate it from the development 
environment that maintained compatibility with older Macintosh software, the procedural 
and C-based “Carbon” framework. A decade later, Cocoa became the basis for the 
development environment of both the iPhone and the iPad. 

NextStep, like Smalltalk before it, only managed to find a niche market in custom 
rapid-application development in Fortune 500 corporations and universities. The core of the 
current iPhone and Mac OS X software development community can be traced to the small 
community of NeXT developers in the 1990s. Most of these developers worked as freelance 
contractors for the large institutions that hired them; some worked in banking and had 
previously been Smalltalk programmers. What drew these developers to what was then, by 
most standards, an unsuccessful platform, was a belief in the technological promise of the 
OO paradigm, and a belief that OO served to make the developer’s experience more 
productive and enjoyable by eliminating repetitive tasks, which both wasted their time and 
were sources of bugs. OO also allowed for software, particularly applications with graphical 
user interfaces, to be more flexible and thus better respond to the needs of end users. NeXT 



 3 

developers considered NextStep to be technologically superior to the most popular 
platforms in the industry, and represented the direction the industry ought to take, but 
doomed to languish in a marginal niche. Thus, in the early 1990s, NeXTStep had achieved 
its own cult status among a tiny cadre of software developers, with similar minority status as 
Apple’s much larger Macintosh platform (for more on the “Cult of Mac,” see (Belk & 
Tumbat, 2005; Kahney, 2004)). Upon its acquisition by Apple and the return of NeXT CEO 
Jobs to Apple’s leadership, the cult status of NeXT and of the Macintosh began to merge. 
The NeXT community welcomed the change as the Macintosh promised a large new market 
for them in consumer applications. In the 2000s this community achieved modest success as 
independent (“indie”) software developers, creating and marketing their own small-scale, 
original applications through the Internet. (van Meeteren, 2008) The advent of the iPhone 
App Store has created huge opportunities as well as some anxieties within the community 
that the large influx of developers from other platforms may dilute the values and cohesion 
of the community. 

My historical interest involves how the NeXT developer community became the Mac 
“Cocoa” developer community after the Apple acquisition and the release of Mac OS X. My 
argument is that the norms and values driving the Cocoa community are a result of the 
convergence of NeXT developer values and Macintosh user values. NeXT values are 
associated with the asserted technological superiority of object-oriented programming using 
dynamic binding, the specific implementation of these ideas in Cocoa using the hybrid 
language Objective-C, and the tight integration of Cocoa with the operating system, 
developer tools, and graphical user interface, as manifested in the graphical programming 
tool, Interface Builder. Mac values assert ease of use and aesthetically pleasing while 
functional design of both hardware and software as goals for engineers and software 
developers. While to some extent there was some degree of overlap in these values, 
particularly because Steve Jobs founded both companies and made graphical user interfaces 
features of both platforms, the NeXT community was focused more on ease of use and 
programming for developers, while the classic Mac community put up with difficult tools 
and programming systems as long as the end goal better served the user. The tight-coupling 
of graphical user interface and object-oriented programming on NextStep, and on Smalltalk 
upon which it was based, meant that even prior to the acquisition, arguments were made that 
dynamic object-oriented systems better served the user by allowing developers to more easily 
produce graphical user interface applications. However NeXT’s market for its software was 
not consumer end-users, like Apple’s Macintosh, but large corporate and academic 
institutions with low-volume needs. Thus, the norm that software should be easy to use for 
ordinary people was less of a driving force for NeXT developers than Mac developers. In 
addition, the original Macintosh programming environment was procedural (being based 
originally on Pascal), thus divorcing the tight coupling of the tools and the interface that had 
obtained in Smalltalk. After Apple’s acquisition of NeXT and the replacement of the original 
Mac OS with the NextStep-derived Mac OS X, and the transformation of NeXT software 
contractors into Mac consumer software developers, these two sets of norms began to 
merge. This project hopes to explicate and follow this transformation within the community. 

In the present, the “Cocoa” developer community might in some respects be viewed 
as the cultural and technological vanguard of the Apple fan and user community at large. 
Much of the ideology and cultural values associated with Apple products originate with 
Apple itself, and especially with Steve Jobs. However, Cocoa developers see themselves as 



 4 

partners with Apple in promoting Apple’s software platforms and their associated values. 
Moreover, there is a revolving door between the third party Cocoa community and Apple 
itself, with Apple frequently hiring well-known developers and many former Apple 
employees striking out for themselves. Thus to some extent a study of the Cocoa community 
can be seen as proxy for a study of the cultural values operating among Apple software 
engineers, who are difficult to get access to. The Cocoa community is widely dispersed 
geographically and maintains cohesion through an online presence in blogs, mailing lists, and 
Twitter correspondence. Cocoa developers support Apple’s goals in general, but will take it 
upon themselves to criticize Apple when the company acts against their interests or the 
interests of users, or in a way that they believe is contrary to Apple’s professed values and 
the greater good of Apple’s platforms.(van Meeteren, 2008) 

While Michiel van Meeteren’s work has accurately described the norms of collegiality 
and aesthetic craftsmanship at work within the Cocoa community, I aim to extend his work 
both by conducting a more extensive qualitative case study of a primary site within the 
community and by tracing its history. My research aims to combine a social history of the 
NeXT/Cocoa software developer community from the late 1980s through the present, and 
an ethnographic study of a particular node in this community centered in Seattle, 
Washington. It is also an enquiry on the role that ideology and cultural values play within a 
community of software developers. Who were the first NeXT developers, and how did the 
community adjust and adapt to the changes in the market and their primary patron over the 
last two decades? How were the ideologies of NeXT and Apple integrated after the 
acquisition, and how did community members navigate tensions between the two?  

The purpose of the ethnographic component of the project is to explore the culture, 
values, and ideological commitments of Cocoa developers, to explain their drives and 
motivations in supporting and programming for Apple’s technology, and to understand what 
being a Cocoa programmer means to their lives. What motivates their passionate 
commitment to what they consider to be a superior technology? What draws them to the 
platform, and how are they enrolled as members into the community and its values? What 
role does the actors’ notions of “technological superiority” and “quality” play in their view 
of their work, identity, and their efforts to “evangelize” the technology? How do they 
navigate a sometimes positive, sometimes tendentious relationship with Apple, to whom 
their livelihood is tied? How do their commitments and values affect design decisions that 
go into the construction of their products? How have they policed the boundaries of the 
Cocoa community, and how do they attempt to maintain and spread their core values in the 
midst of a rapid expansion of developers on the platform?  

Theoretical and Analytical Categories 

There may be some question as to why I believe the term “ideology” properly applies 
to the system of values that motivate Cocoa developers. One problem is that there are many 
different definitions of the term, and it is difficult to be precise about what one means by 
ideology. Raymond Williams lays out three main definitions: 1) a system of beliefs 
characteristic of a social group or class; 2) a system of false or illusory beliefs; 3) the (cultural 
or symbolic) process of production of meaning and values. Out of these three definitions, 
mine is closest to the third, in line with Clifford Geertz’s view of ideology as a cultural 
system. (Geertz, 1973a) It might also be accurate to say that the first definition also applies, 
although only in the sense of a particular social group (the Cocoa community), rather than of 



 5 

a class; although Cocoa developers tend to be of middle or upper middle class origin, in 
order to take their values seriously, I am not interested in reducing them to expressions of 
bourgeois interests. For the same reasons I am not interested in a pejorative definition of 
ideology as illusion or false consciousness from an analytical perspective, although such a 
view from an actor’s perspective might be revealing. Of the sixteen different definitions 
listed by Terry Eagleton, the applicable ones to this study would also include, in addition to 
the two already listed by Raymond, “that which offers a position for a subject”, “identity 
thinking”, “the medium in which conscious social actors make sense of their world”, 
“action-oriented sets of beliefs” and “the process whereby social life is converted to a natural 
reality.”(Eagleton, 1991, pp. 1-2) I am thus interested in a definition of ideology that 
encompasses the cultural system of values that motivate and drive action for Cocoa 
developers, govern their technical practice, and serve to mark and produce their identities as 
Cocoa developers. In this I follow Althusser in viewing ideology as a system of legitimation 
that helps interpolate an individual’s subject position, although I reject his view that such 
systems, and the apparatuses which transmit and reproduce them, ultimately reduce to 
political and economic domination. Rather I am interested in how such moral values are 
translated into technical ones.  

Campbell and La Pastina, Belk and Tumbat, and Kahney focus on the popular 
perception of Macintosh and Apple fandom as a religion. While viewing Apple fandom as a 
religion metaphorically is useful for these authors, few would argue that it is actually a literal 
religion. But Geertz and others have noted the similarities between the concepts of ideology 
and religion, (Geertz, 1973b, pp. 199-200); both may exhibit militancy, fanaticism, and 
dogma. As a secular set of beliefs, “ideology” is more appropriate a category than “religion” 
with which to study Cocoa community values.  

Hugh Gusterson has written about how nuclear weapons scientists of various 
political alignments become enrolled in a pro-weapons moral ideology through rituals of 
security background checking and weapons testing, and how their identities are reinforced 
and enacted through practices of secrecy that make them feel as if part of a select elite. 
(Gusterson, 1996) An analogous culture of secrecy exists within Apple, although within the 
third party Cocoa community the value of information sharing is more prevalent. However, 
the community’s long years as a small niche, and its belief in the superiority of its technical 
tools and practices, do elicit within Cocoa developers a sense of being a better-informed elite 
among programmers; as in Gusterson’s account, this project will investigate how ideology is 
manifested in the everyday technical practice of these developers, and how they educate 
newcomers into their community. 

A number of other conceptual categories might also have been used in place of 
“ideology.” Paul Edwards has used the Foucauldian concept of “discourse” in his study of 
Cold War “closed world” and “cyborg” political and metaphorical frames that motivated 
computer research in the twentieth century (Edwards, 1996). “Discourse” is extremely useful 
for analyzing tropes, metaphors, and figurative or symbolic representations of the Steve 
Jobs, the Macintosh, its loyal developers and its antagonists (Microsoft) within a mythic hero 
narrative.(Belk & Tumbat, 2005) This is particularly useful for examining the cultural 
mechanisms at work within the Cocoa community. However, the term “discourse” is less 
useful for describing a system of beliefs and values with moral or political import for 
practitioners. While the articulation of these cultural values in technical terms could be 



 6 

described as “discursive,” the notion has less application than “ideology” to how individuals 
are enrolled in a normative project upon entering a community, and how their identities are 
co-constructed in this process. 

Other relevant concepts to this project are “paradigm” and “technological frame.” 
Kuhn’s notion of paradigm has the useful component of a technical worldview that is 
conceptually incommensurate with others, simultaneously theoretical and social, which takes 
over in revolutionary transformations of a field. However Kuhn’s concept as originally 
articulated is tied too closely to scientific research rather than engineering practice, with its 
components of exemplars and anomalies. Moreover, as Paul Edwards has mentioned, the 
term has been “popularized to the point of vulgarity.”(Edwards, 1996, p. 32) This 
popularization has led to the term becoming rather an actor’s category; object-oriented 
programming is commonly referred to as being a different paradigm than its procedural 
predecessor, and thus when I use the term, I will use it in this actor’s sense rather than in 
Kuhn’s more specific sense. Related to the notion of paradigm is Wiebe Bijker’s 
“technological frame.” Both because this term more specifically refers to technology and 
because it is known only within the STS literature, it is more useful as an analytic concept. 
Like a paradigm, a technological frame is organized around solving particular problems that 
have been articulated as being centrally important by the community associated with it, and 
these priorities are articulated in culturally specific ways. Engineers may have high or low 
“inclusion” within a particular frame, and different levels of “inclusion” within multiple 
frame, which, like paradigms, may struggle against each other for dominance. These features 
of the concept are extremely useful and thus I may refer to the concept occasionally; 
however in general “ideology” is more pertinent to this project as the notion of 
“technological frame” is primarily about the technical priorities within a given problem 
domain, and not about the moral cultural values associated with a technical community. 

A number of recent historical and/or ethnographic studies of computing have 
looked into the cultural values and ideology of engineers or software developers (Turner, 
2006; Coleman, 2004, 2009; Malaby, 2009) Turner explores the transformation of cybernetic 
countercultural values into computer libertarian values from the 1960s to the 1990s. Steve 
Jobs and Apple have been at the center of the countercultural computer narrative, and it is 
appropriate to explore the ideology of Apple’s developers in connection with these earlier 
projects. Turner noted that one aspect of the commune movement was its contradictory 
political stance against agonistic politics; Malaby and Coleman have shown similar (a)political 
attitudes within the developers of Second Life and in the free and open source developer 
community, respectively. Coleman’s study of the free software community reveals that, like 
the Cocoa developer community, free software constitutes an ideology advocating specific 
moral values through technical practice. My project will contribute to this growing literature 
on computing and ideology.  

One additional note about my use of the term “platform.” In the computer industry, 
“platform” is an actor’s category. Tarleton Gillespie has identified in the Oxford English 
Dictionary four broad categories of usage of the word “platform”: architectural, figurative, 
political, and computational. He describes the computational meaning as “an infrastructure 
that supports the design and use of particular applications, be it computer hardware, 
operating systems, gaming devices, mobile devices, digital disc formats… The term has also 
been used to describe the online environments that allow users to design and deploy 



 7 

applications they design or that are offered by third parties… [often by making public APIs 
(application programming interfaces)]” (Gillespie, 2010, p. 3) The Macintosh versus the 
Windows PC is the quintessential platform war, but others include Facebook versus 
MySpace, and the iPhone/iOS versus Android. “Platform” is thus a conveniently general 
term that can encompass hardware or software, as long as there is the sense that third parties 
can build upon it. Platforms matter because of network effects (technological momentum) 
(Hughes, 1987), which give their controllers market power. Part of this inertia is because 
technical platforms, whether hardware or software, have obduracy–it can be a significant 
undertaking to port a piece of software from one platform to another, often requiring 
rewriting. Gillespie also notes that the word “platform” suggests “neutrality towards use–
…flat, featureless, and open to all… A computing platform can be agnostic about what you 
might want to do with it, but either neutral (‘cross-platform’) or very much not neutral 
(‘platform-dependent’) to which provider’s application you’d like to use.” (Gillespie, 2010, p. 
4) 

An alternate definition of “platform” within STS can be found in (Keating & 
Cambrosio, 2000, 2003) Keating and Cambrosio’s definition of “biomedical platform” is an 
analytical category derived from actors’ “native” use of the term in biomedicine, and seems 
to refer to a heterogeneous configuration of tools/assays, practices, definitions, standards 
and conventions, which constitute an infrastructure upon which multiple biomedical fields 
may rest. Keating and Cambrosio note that their notion of “platform” does not exactly fit 
the definition of infrastructure given by (Bowker & Star, 1999) because platforms are visible 
while infrastructure is typically invisible until breakdown. They also note that “platforms are 
active, generative… As opposed to infrastructures that show or are supposed to show some 
sort of historical continuity, platforms are made for contingencies: they are only for the time 
being.” (Keating & Cambrosio, 2000, p. 359) Computer software platforms are like and 
unlike both infrastructures and biomedical platforms–they may be visible or invisible, 
transparent or opaque. However a computer platform is much more like infrastructure than 
a biomedical platform due to its foundational role for the software that runs on top of it. 
More than just conventions and standards, there is a level of “materiality” or at least 
obduracy in software code (boyd, 2006; Lessig, 2006) that make certain things possible or 
easy and others difficult or impossible if the platform producers (Apple in this case) have 
not provided API (application programmer interface) calls or hooks to allow developers to 
do certain things. Although in principle software is infinitely malleable, in practice, required 
continuity with installed user bases mean that software platforms are much more beholden 
to history than Keating and Cambrosio’s definition would have it. A computer platform, as 
used by “natives” in computing as opposed to biomedicine, is also not a hetereogenous 
configuration of tools, practices, and conventions, but rather a stable and interdependent 
stack of hardware artifacts and software code layered upon each other. Keating and 
Cambriosio’s definition of platform is a bit too specific to biomedicine to be analytically 
applicable here.  

Intellectual Merit 

This dissertation will contribute to the growing literature in history of computing 
devoted to software. The late Michael Mahoney noted that the history of computing has 
focused primarily on hardware artifacts (Mahoney, 2004, 2005, 2008). His call for historical 
studies of software has led to a growing body of work in this area (Agalianos, Whitty, & 



 8 

Noss, 2006; Campbell-Kelly, 2003; Ensmenger, 2009, 2010; Ensmenger & Aspray, 2002; 
Haigh, 2002, 2006, 2009; Mahoney, 2002a, 2002b). Prior to this recent scholarship, the 
literature on software history had been heavily dominated by participant accounts and their 
preoccupations, with the result that the literature had bifurcated into internalist histories of 
programming languages and systems software, and business histories of software companies, 
with an undue focus on the PC software industry, which was most visible in the media. The 
recent literature has made some progress towards bringing the history of software more in 
line with the history of technology. These works are varied: Mahoney tries to relate the 
history of software as a whole to the history of automation; Ensmenger looks at it from the 
perspective of labor and professionalization; Haigh focuses on specific software industries 
such as databases and word processing; Agalianos et. al. look at the social history of Logo, as 
both a programming language and a radical educational philosophy; Campbell-Kelly looks at 
the history of the industry as a whole, but reorients its study towards the contracting and 
corporate software sectors, which have been largely invisible in the literature but made up 
the majority of the industry from the 1950s through the mid-1970s, and still account for a 
vast share of the industry. Tom Haigh’s work and others have taken up Mahoney’s call 
towards the study of software applications. Mahoney said that “what makes the history of 
software hard” is that it is really the history of the communities of practice that model their 
world into symbolic code.(Mahoney, 2008) The software as archive or as artifact are both 
extremely difficult texts to read because only through dynamic interaction with the running 
program, rather than reading the static program text, can one get an intimate sense of it, yet 
the problems of obsolescence of hardware, and inadequacy of documentation make 
historians’ access to legacy software problematic. Yet fortunately, although software itself 
may be difficult to get at, the communities that produced them, first and foremost the 
programmers, are mostly still alive and available to us. For this reason, a turn towards social 
history of software developer communities is in order. Although though much has been 
written about the early PC hobbyist community (Freiberger & Swaine, 2000; Ceruzzi, 1996, 
1998; Campbell-Kelly & Aspray, 1996; Turner, 2006; Markoff, 2005; Levy, 2001), only 
Akera’s work on the IBM SHARE user group (Akera, 2001, 2007) specifically explores the 
history of a software developer community, especially one devoted to a particular platform 
tied to a specific manufacturer. Mahoney also understood that new programming language 
paradigms such as object oriented programming were simultaneously technical and 
managerial, and were designed to foster good practices, or in other words, “proper ways to 
think about programming”(Mahoney, 2008, p. 13) among practitioners. My dissertation is 
interested in interrogating how these engineering and managerial concerns dovetail with the 
influence of more macrosocial countercultural and cybernetic values that might have played 
a part in the development of PCs and graphical user interfaces (Bardini, 2000; Bardini & 
Horvath, 1995; Kay, 1993; Turner, 2006). In doing this, the older history of programming 
languages and systems software is revised by examining them in terms of community 
practices and norms that embed and reproduce social relations. By explaining how a 
particular community of software developers translates its members’ work practice, 
concerns, and values into computational microworlds, it is my hope that this will be a 
contribution to Mahoney’s call for works viewing “software as model, software as 
experience, software as medium of thought and action, software as environment within 
which people work and live.” (Mahoney, 2008, p. 12)  

Whereas the history of software is only beginning to look at communities of 
programmers, ethnographies of software, unsurprisingly, have made them their primary 



 9 

focus. A majority of these have focused on the free and open source software (FOSS) 
communities. (Coleman, 2004, 2009; Kelty, 2008; Malaby, 2009). Many of these are 
concerned with the political resistance against intellectual property. Malaby’s work looks at a 
specific software company, the developers of the online world, Second Life. These works 
have highlighted the role of values and ideologies, specifically the so-called “hacker 
ethic,”(Levy, 2001) governing these subcultures within software development. This study will 
provide a counterpoint to these studies by exploring the role of cultural values within a 
software community tied to a monopolistic and proprietary manufacturer, which values 
information sharing while reconciling it with entrepreneurial profit-seeking.  

There is an extensive popular literature on the history of the first PCs, Xerox PARC, 
Apple, the Macintosh, and the life of Steve Jobs (references). Critical scholarship is needed 
to correct some of the myth-making aspects of these works. Even Sherry Turkle, in Life on 
the Screen (Turkle 1995), wrote that graphical interface Macintosh versus command-line DOS 
PC users worked in psychologically different modes, the former embracing a “culture of 
simulation” where transparency meant the user knowing how to get the computer to do 
something for her, and the latter celebrating a “culture of simulation,” where transparency 
meant access to technical underpinnings. This essentialism only reifies the popular narratives 
about the Macintosh. Some recent work (Belk & Tumbat, 2005; Campbell & La Pastina, 
2010; van Meeteren, 2008) has begun to address some of these problems. None, however, 
do so from an STS perspective. 

The canon of constructivist technology studies has long valued the role of users 
(Bijker, 1995; Kline & Pinch, 1996; Pinch & Bijker, 1984), but recent works have focused 
more explicitly on “the user” as an analytical category (Akrich, 1992; Cowan, 1987; 
Greenberg, 2008; Laegran, 2003; Lindsay, 2003; Oudshoorn & Pinch, 2003; Woolgar, 1991; 
Wyatt, 2003). Many of these works (Woolgar 1991, Lindsay 2003, and Laegran 2003 in 
particular) are case studies of computing, as the category of “the user” has been important 
for user interface designers within the field of human-computer interaction (HCI) (Cooper 
& Bowers, 1995). Although in many respects, software developers are producers and 
“manufacturers” of technology rather than users, in the case of many small-scale 
independent iPhone and Cocoa developers, they have more in common with what von 
Hippel calls “lead users” (von Hippel, 2005), in that many of them are technically 
sophisticated, and thus empowered users who are able to both innovate and effect 
technological change on a platform owned by a powerful producer (Apple). As von Hippel 
counts open source developers and mountain bike hobbyists-turned-manufacturers as 
examples of lead users, independent third party Cocoa developers, who do not work for 
Apple but often write iPhone or Macintosh apps for themselves, can be seen as innovating 
“users” in this light. Thus, this project will be a contribution to technology studies, user 
studies, as well as innovation studies. 

Gender studies of technology have explored the effects of male domination of 
professional engineering disciplines and the cultural association of technology with 
masculinity, both at work and as hobbies (Cockburn & Ormrod, 1993; Cowan, 1983; Haring, 
2003; Oldenziel, 1999; Oudshoorn, 1999; Wajcman, 1991, 2004). Recent studies have turned 
towards the male gendering of computer tinkering and programming (Ensmenger, 2009; 
Faulkner, 2000a, 2000b; Kleif & Faulkner, 2003; Lindsay, 2003). Although there are growing 
numbers of women in the computer engineering and programming professions, these fields 



 10 

continue to be defined by masculine codes that value the pleasure in tinkering and hacking. 
Cocoa programmers, many of whom work for themselves or for very small companies, and 
say they are in it for the pleasure, tend to be overwhelmingly male. Thus this project will be 
also be a contribution to the study of homosocial technical worlds. 

Research Plan, Methods and Sources 

This project has two components, a historical component and an ethnographic one. 
The historical component will follow the social history of the NeXT developer community 
in the 1990s and its transformations in the wake of first the Apple purchase, and second, the 
release of the iPhone App Store. The purpose of this portion of the study is to explore the 
historical connection between the NeXT/Cocoa community and larger debates about the 
merits of dynamic object-oriented programming technology within the business and 
academic software community more widely, and how these debates helped to structure the 
subject position of being a NeXT/Cocoa programmer. This portion will be based primarily 
on oral history, consisting of semi-structured interviews in which a rough outline will be 
followed, but the interview will be flexible to allow for the exploration of topics arrived at in 
situ. Within the Cocoa community a number of longtime developers who have been on the 
platform since the NeXT days are well known. These include Andrew Stone, a developer of 
graphics applications, Ken Case, co-founder of Omni Group, one of the oldest independent 
Cocoa development companies, Wil Shipley, Case’s former partner who founded Delicious 
Monster, one of the most well respected companies in the community, and Scott Anguish, 
former head of StepWise, a NeXTStep consulting firm. Other luminaries in the community 
include Aaron Hillegass and Bill Cheeseman, authors of popular Cocoa programming books, 
and Scott Stevenson, Daniel Jalkut, Brent Simmons, and Craig Hockeberry, developers of 
popular Mac and iPhone applications. Many of these men (the community is overwhelmingly 
composed of men) have widely followed blogs; indeed, blogs constitute one of the main 
“meeting spaces” of a community that is geographically distributed. I may also seek to 
interview Brad Cox, the creator of the Objective-C language which is used by Cocoa, who is 
a key proponent of object-oriented programming as a solution to the software crisis. 
Archival research of Cox’s written work and that of Alan Kay, whose ideas about object-
oriented programming underlie the Cocoa philosophy, may also be pursued as necessary.  

The other component of the project is a multi-sited ethnographic study of a 
particular Cocoa development community located in Seattle. Seattle is the home of both 
Omni Group and Delicious Library, and the presence of these two well-known companies 
(or possibly, the aura of their founders) has attracted many younger Cocoa developers. (It 
remains an open question what effect the local presence of Microsoft has on this 
community, which sees Microsoft and its technology as the antithesis to the values of Apple 
and Cocoa.) The local community meets as a group called “XCoders” (a play on the name of 
Apple’s development environment, XCode). I will seek to gain access to this informal group 
and attend the biweekly meetings as a participant observer. In addition, I will try to gain 
ethnographic access to the workplaces of members of XCoders, or other Cocoa developer 
companies in the area. This may involve volunteering my services as a software tester or 
programmer. 

My former occupation as a software engineer in Apple’s Cocoa technology division 
gives me a unique level of access to this community. I have built up a network of contacts 
beginning with personal friends and former coworkers at Apple. One of the most important 



 11 

contacts is a former Apple Cocoa Evangelist, whose job involved maintaining a close 
relationship with the third party community. In addition, some members of the community 
are former Apple employees themselves. Although Apple’s strict policy of secrecy prevents 
access to current Apple employees, my contacts there have been happy to point me to 
acquaintances outside the company. The fact that a large majority of Cocoa developers work 
either alone, with a single partner, or in small, entrepreneurial businesses makes gaining 
access significantly easier than gaining access to a large corporation. In addition, I have 
conducted previous research in Silicon Valley on two small iPhone software companies; in 
addition to incorporating this research into the dissertation, the relationships formed during 
this research provide another source of contacts.  

Tentative Outline of Chapters 

Chapter Outline: 

1) Introduction 

This section will provide introduce NeXT and the NeXT/Cocoa developer 
community, and the centrality of this core group in promoting Apple’s cultural 
values and object-oriented methodology among new iPhone developers. It will also 
present the theoretical frameworks of ideology and technological frames and discuss 
the related literature. Additional relevant literature on constructivist and gender 
technology studies, history of computing, and ethnography of computing will also be 
reviewed. 

2) The beginning of the NeXT community in the late 1980s and early 1990s.  

This section will look at the original market of NeXT developers as contractors for 
Fortune 500s and in Rapid Application Development, their initial forays into early 
web services with WebObjects, and connections to Smalltalk programmers in the 
financial sector. This will be examined in the context of the movement within the 
software industry towards Object-Oriented Programming and Brad Cox’s vision of 
“Software Industrial Revolution.” Did the NeXT community share any connections 
with the Macintosh developer community? How large was it? Why did these 
programmers decide to develop for this platform? How did they feel about NeXT’s 
technology versus its relative market obscurity? 

3) Transitioning to “Indie.”  

This section will examine how NeXT’s purchase by Apple, the release of Mac OS X 
and the development of Internet infrastructure in the dot.com era transformed the 
community into independent applications developers for a consumer market. How 
did they negotiate a new identity as Macintosh developers? Were there any tensions 
between NeXT and Macintosh cultural and technical values, and how were these 
resolved? In what ways did the two sets of values combine and reinforce each other? 

4) The Cocoa community on the Web 

This chapter will look at the role of blogs, twitter feeds, and mailing lists in 
constructing a virtual online space for like-minded Cocoa developers, how these 



 12 

forums shape the discourse of the community, do boundary work, and construct 
positions of cultural and technical authority and expertise. 

5) The Seattle XCoders 

This chapter will look at the dynamics of the Seattle XCoders developer group, and 
the role it plays in creating collegiality among competing local Cocoa entrepreneurs. 

6) The iPhone Gold Rush 

This chapter looks at the cultural tensions surrounding the rapid influx of 
programmers from outside the Cocoa community and the introduction of stronger 
capitalist values associated with investor interest and cutthroat competition. This will 
be examined through a specific case study of an iPhone startup in the summer of 
2008. 

7) Ethnography of a Seattle based Cocoa company 

This chapter will examine how Cocoa community norms and values play out in the 
everyday engineering practice of an independent Seattle-based Cocoa company. Are 
there differences between developers producing for the iPhone versus the 
Macintosh? How are feature requests, bug reports, and complaints from users 
translated into design decisions, how is the user represented, and how are these 
issues negotiated in tradeoffs with engineering or marketing priorities? What is the 
nature of the relationship of the company or its individual developers with Apple? 
How might a positive relationship benefit the company, and how are tensions 
negotiated? 

Bibliography 

Agalianos, A., Whitty, G., & Noss, R. (2006). The Social Shaping of Logo. Social 

Studies of Science, 36(2), 241-267. 

Akera, A. (2001). Voluntarism and the Fruits of Collaboration: The IBM User Group, 

Share. Technology and Culture, 42(4). Retrieved from 

http://www.jstor.org.proxy.library.cornell.edu/stable/c116380 

Akera, A. (2007). Calculating a Natural World: Scientists, Engineers, and Computers 

During the Rise of U.S. Cold War Research. Inside technology. Cambridge, Mass: 

MIT Press. 

Akrich, M. (1992). The De-Scription of Technical Objects. In W. E. Bijker & J. Law 



 13 

(Eds.), Shaping Technology/Building Society: Studies in Sociotechnical Change, 

Inside Technology (pp. 205-224). Cambridge, MA: MIT Press. 

Bardini, T. (2000). Bootstrapping : Douglas Engelbart, coevolution, and the origins of 

personal computing. Stanford  Calif.: Stanford University Press. 

Bardini, T., & Horvath, A. T. (1995). The Social Construction of the Personal Computer 

User. The Journal of Communication, 45(3), 40-66. doi:10.1111/j.1460-

2466.1995.tb00743.x 

Belk, R. W., & Tumbat, G. (2005). The Cult of Macintosh. Consumption, Markets & 

Culture, 8(3), 205-217. doi:10.1080/10253860500160403 

Bijker, W. (1995). Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Sociotechnical 

change. Cambridge  Mass.: MIT Press. 

Bowker, G. C., & Star, S. L. (1999). Sorting Things Out: Classification and Its 

Consequences. Inside technology. Cambridge, Mass: MIT Press. 

boyd, D. (2006). Friends, friendsters, and top 8: Writing community into being on social 

network sites. First Monday, 11(12). Retrieved from 

http://www.firstmonday.org/issues/issue11_12/boyd/ 

Campbell-Kelly, M. (2003). From airline reservations to Sonic the Hedgehog : a history 

of the software industry. Cambridge  Mass.: MIT Press. 

Campbell-Kelly, M., & Aspray, W. (1996). Computer: A History of the Information 

Machine. The Sloan Technology Series (2nd ed., Vol. 1). Boulder, CO: Westview 

Press. 



 14 

Campbell, H. A., & La Pastina, A. C. (2010). How the iPhone Became Divine: New 

Media, Religion and the Intertextual Circulation of Meaning. New Media & 

Society. doi:10.1177/1461444810362204 

Ceruzzi, P. (1996). From scientific instrument to everyday appliance: The emergence of 

personal computers, 1970–77. History and Technology: An International Journal, 

13(1), 1. 

Ceruzzi, P. E. (1998). A History of Modern Computing. History of computing; (2nd ed.). 

Cambridge, Mass. : MIT Press. 

Cockburn, C., & Ormrod, S. (1993). Gender and Technology in the Making. London ; 

Thousand Oaks, Calif.: Sage. 

Coleman, G. (2004). The Political Agnosticism of Free and Open Source Software and 

the Inadvertent Politics of Contrast. Anthropological Quarterly, 77(3), 507-519. 

Coleman, G. (2009). CODE IS SPEECH: Legal Tinkering, Expertise, and Protest among 

Free and Open Source Software Developers. Cultural Anthropology, 24(3), 420. 

Cooper, G., & Bowers, J. (1995). Representing the User: Notes on the Disciplinary 

Rhetoric of Human-Computer Interaction. Cambridge Series On Human 

Computer Interaction, (10), 48-66. 

Cowan, R. (1983). More work for mother : the ironies of household technology from the 

open hearth to the microwave. New York: Basic Books. 

Cowan, R. S. (1987). The Consumption Junction: A Proposal for Research Strategies in 

the Sociology of Technology. In W. Bijker, T. P. Hughes, & T. J. Pinch (Eds.), 



 15 

The Social Construction of Technological Systems: New Directions in the 

Sociology and History of Technology (pp. 261-280). Cambridge  Mass.: MIT 

Press. 

Cox, B. J. (1990a, October 1). There Is a Silver Bullet: A software industrial revolution 

based on reusable and interchangeable parts will alter the software universe. 

BYTE, Pg. 209. 

Cox, B. J. (1990b). Planning the Software Industrial Revolution. IEEE Software, 7(6), 25. 

Eagleton, T. (1991). Ideology : an introduction. London ;;New York: Verso. 

Edwards, P. N. (1996). The Closed World: Computers and the Politics of Discourse in 

Cold War America. Inside Technology. Cambridge, Mass.: MIT Press. Retrieved 

from http://www.h-net.org/review/hrev-a0a5x0-aa Materials specified: Book 

review (H-Net)http://www.h-net.org/review/hrev-a0a5x0-aa 

Ensmenger, N. L. (2009). Making Programming Masculine. In T. Misa (Ed.), Gender 

Codes: Women and Men in the Computing Professions. Wiley. 

Ensmenger, N. L. (2010). The “Computer Boys” Take Over: Computers, Programmers, 

and the Politics of Technical Expertise. Cambridge, MA: MIT Press. 

Ensmenger, N. L., & Aspray, W. (2002). Software as Labor Process. In U. Hashagen, R. 

Keil-Slawik, & A. L. Norberg (Eds.), History of Computing: Software Issues (pp. 

139-165). Berlin: Springer. 

Faulkner, W. (2000a). The Power and the Pleasure? A Research Agenda for "Making 

Gender Stick" to Engineers. Science, Technology, & Human Values, 25(1), 87-



 16 

119. 

Faulkner, W. (2000b). Dualisms, Hierarchies and Gender in Engineering. Social Studies 

of Science, 30(5), 759-792. doi:10.1177/030631200030005005 

Freiberger, P., & Swaine, M. (2000). Fire in the Valley: The Making of the Personal 

Computer (2nd ed.). New York: McGraw-Hill. 

Geertz, C. (1973a). Ideology As a Cultural System. In The Interpretation of Cultures: 

Selected Essays (pp. 193-233). New York: Basic Books. 

Geertz, C. (1973b). The Interpretation of Cultures: Selected Essays. New York: Basic 

Books. 

Gillespie, T. L. (2010). The Politics of 'Platforms'. New Media & Society, Vol. 12, No. 3, 

2010. Retrieved from http://ssrn.com/paper=1601487 

Greenberg, J. (2008). From BetaMax to Blockbuster: Video Stores and the Invention of 

Movies on Video. Cambridge  Mass.: The MIT Press. 

Gusterson, H. (1996). Nuclear Rites: A Weapons Laboratory at the End of the Cold War. 

Berkeley: University of California Press. 

Haigh, T. (2002). Software in the 1960s as concept, service, and product. Annals of the 

History of Computing, IEEE, 24(1), 5-13. doi:10.1109/85.988574 

Haigh, T. (2006). Remembering the Office of the Future: The Origins of Word 

Processing and Office Automation. Annals of the History of Computing, IEEE, 

28(4), 6-31. 



 17 

Haigh, T. (2009). How Data Got its Base: Information Storage Software in the 1950s and 

1960s. IEEE Annals of the History of Computing, 31(4), 6-25. 

Haring, K. (2003). The "Freer Men" of Ham Radio: How a Technical Hobby Provided 

Social and Spatial Distance. Technology and Culture, 44(4), 734-761. 

von Hippel, E. (2005). Democratizing Innovation. Cambridge  Mass.: MIT Press. 

Hughes, T. P. (1987). The Evolution of Large Technological Systems. In W. Bijker, T. P. 

Hughes, & T. J. Pinch (Eds.), The Social Construction of Technological Systems: 

New Directions in the Sociology and History of Technology (pp. 449-482). 

Cambridge  Mass.: MIT Press. 

Kahney, L. (2004). The cult of Mac. San Francisco: No Starch Press. 

Kane, Y. I., & Catan, T. (2010, September 10). Apple Blinks in Apps Fight. wsj.com. 

Retrieved from 

http://online.wsj.com/article/SB1000142405274870464440457548147121758134

4.html 

Kay, A. C. (1993). The early history of Smalltalk. In The second ACM SIGPLAN 

conference on History of programming languages (pp. 69-95). Cambridge, 

Massachusetts, United States: ACM. doi:10.1145/154766.155364 

Keating, P., & Cambrosio, A. (2000). Biomedical Platforms. Configurations, 8(3), 337-

387. 

Keating, P., & Cambrosio, A. (2003). Biomedical platforms : realigning the normal and 

the pathological in late-twentieth-century medicine. Cambridge  Mass.: MIT 



 18 

Press. 

Kellog, D. (2010, June 4). iPhone vs. Android. Nielsen Wire. Retrieved August 29, 2010, 

from http://blog.nielsen.com/nielsenwire/online_mobile/iphone-vs-android/ 

Kelty, C. (2008). Two Bits: The Cultural Significance of Free Software. Durham: Duke 

University Press. 

Kleif, T., & Faulkner, W. (2003). "I'm No Athlete [but] I Can Make This Thing Dance!"-

-Men's Pleasures in Technology. Science Technology Human Values, 28(2), 296-

325. doi:10.1177/0162243902250908 

Kline, R., & Pinch, T. (1996). Users as Agents of Technological Change: The Social 

Construction of the Automobile in the Rural United States. Technology and 

Culture, 37(4), 763-795. 

Laegran, A. S. (2003). Escape Vehicles? The Internet and the Automobile in a Local-

Global Intersection. In N. Oudshoorn & T. J. Pinch (Eds.), How Users Matter: 

The Co-Construction of Users and Technologies (pp. 81-100). Cambridge  Mass.: 

MIT Press. 

Lessig, L. (2006). Code and Other Laws of Cyberspace (2nd ed.). New York: Basic 

Books. 

Levy, S. (2001). Hackers: Heroes of the Computer Revolution. New York: Penguin 

Books. 

Lindsay, C. (2003). From the Shadows: Users as Designers. Producers,  

Marketers, Distributors, and Technical Support. In N. Oudshoorn & T. J. Pinch 



 19 

(Eds.), How users matter: the co-construction of users and technologies (pp. 29-

50). Cambridge  Mass.: MIT Press. 

Mahoney, M. S. (2002a). Software: The Self-Programming Machine. In A. Akera & F. 

Nebeker (Eds.), From 0 to 1: An Authoritative History of Modern Computing (pp. 

91-100). New York, N.Y: Oxford University Press. 

Mahoney, M. S. (2002b). Software as Science–Science as Software. In U. Hashagen, R. 

Keil-Slawik, & A. L. Norberg (Eds.), History of Computing: Software Issues (pp. 

139-165). Berlin: Springer. 

Mahoney, M. S. (2004). Finding a history for software engineering. Annals of the History 

of Computing, IEEE, 26(1), 8-19. doi:10.1109/MAHC.2004.1278847 

Mahoney, M. S. (2005). The histories of computing(s). Interdisciplinary Science 

Reviews, 30(2), 119-135. doi:10.1179/030801805X25927 

Mahoney, M. S. (2008). What Makes the History of Software Hard. Annals of the History 

of Computing, IEEE, 30(3), 8-18. doi:10.1109/MAHC.2008.55 

Malaby, T. (2009). Making Virtual Worlds: Linden Lab and Second Life. Ithaca: Cornell 

University Press. 

Markoff, J. (2005). What the dormouse said: how the sixties counterculture shaped the 

personal computer industry. Viking. 

van Meeteren, M. (2008, July 14). Indie Fever: The genesis, culture and economy of a 

community of independent software developers on the Macintosh OS X platform 

(Bachelor thesis, human geography). University of Amsterdam. Retrieved from 



 20 

http://www.madebysofa.com/indiefever 

Oldenziel, R. (1999). Making technology masculine : men, women and modern machines 

in America, 1870-1945. Amsterdam: Amsterdam University Press. 

Oudshoorn, N. (1999). On Masculinities, Technologies, and Pain: The Testing of Male 

Contraceptives in the Clinic and the Media. Science, Technology, & Human 

Values, 24(2), 265-289. 

Oudshoorn, N., & Pinch, T. J. (2003). How Users Matter: The Co-Construction of Users 

and Technologies. Cambridge  Mass.: MIT Press. 

Pinch, T. J., & Bijker, W. E. (1984). The Social Construction of Facts and Artefacts: Or 

How the Sociology of Science and the Sociology of Technology Might Benefit 

Each Other. Social Studies of Science, 14(3), 399-441. 

Turkle, S. (1995). Life on the Screen: Identity in the Age of the Internet. New York: 

Simon & Schuster. 

Turner, F. (2006). From Counterculture to Cyberculture: Stewart Brand, the Whole 

Earth Network, and the Rise of Digital Utopianism. Chicago: University of 

Chicago Press. 

Wajcman, J. (1991). Feminism Confronts Technology. University Park  Pa.: Pennsylvania 

State University Press. 

Wajcman, J. (2004). TechnoFeminism. Cambridge ; Malden  MA: Polity. 

Woolgar, S. (1991). Configuring the User: The Case of Usability Trials. In J. Law (Ed.), 



 21 

A Sociology of Monsters: Essays on Power, Technology, and Domination, 

Sociological review monograph (pp. 58-97). London; New York: Routledge. 

Wyatt, S. (2003). Non-Users Also Matter: The Construction of Users and Non-Users of 

the Internet. In N. Oudshoorn & T. J. Pinch (Eds.), How Users Matter: The Co-

Construction of Users and Technologies (pp. 67-79). Cambridge  Mass.: MIT 

Press. 

 


